

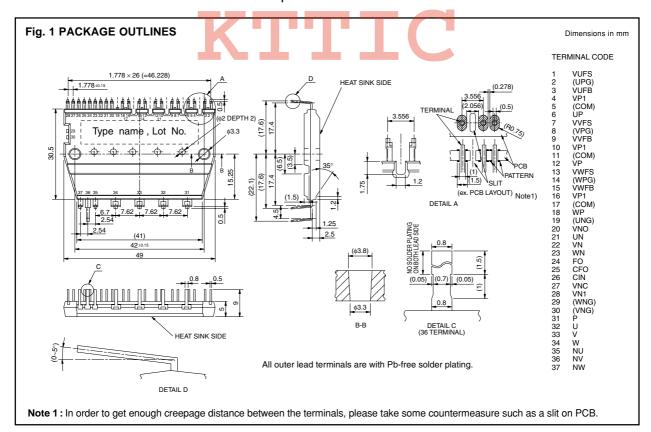
http://www.kttic.com MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>

PS21564-SP

TRANSFER-MOLD TYPE INSULATED TYPE

PS21564-SP

INTEGRATED POWER FUNCTIONS


600V/15A low-loss 5^{th} generation IGBT inverter bridge for three phase DC-to-AC power conversion. Open emitter type.

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs: Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs: Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to an SC fault (Lower-leg IGBT) or a UV fault (Lower-side supply).
- Input interface: 3,5V line CMOS/TTL compatible. (High Active)
- UL Approved : Yellow Card No. E80276

APPLICATION

AC100V~200V inverter drive for small power motor control.

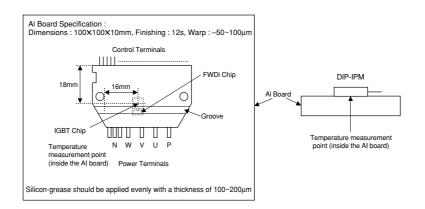
TRANSFER-MOLD TYPE **INSULATED TYPE**

MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	500	V
Vces	Collector-emitter voltage		600	V
±lc	Each IGBT collector current	Tf = 25°C	15	Α
±lcp	Each IGBT collector current (peak)	Tf = 25°C, less than 1ms	30	Α
Pc	Collector dissipation	Tf = 25°C, per 1 chip	22.2	W
Tj	Junction temperature	(Note 1)	-20~+125	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tf $\leq 100^{\circ}$ C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) $\leq 125^{\circ}$ C (@ Tf $\leq 100^{\circ}$ C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
VDB	Control supply voltage	Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	VD = 13.5~16.5V, Inverter part Tj = 125°C, non-repetitive, less than 2 μs	400	V
Tf	Module case operation temperature	(Note 2)	− 20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	2500	Vrms

Note 2: Tf measurement point

TRANSFER-MOLD TYPE **INSULATED TYPE**

THERMAL RESISTANCE

0	Davamatav	Condition	Limits			Limit
Symbol Parameter		Condition		Тур.	Max.	Unit
Rth(j-f)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)		_	4.5	°C/W
Rth(j-f)F	resistance (Note 3) Inverter FWD part (per 1/6 module)		_	_	6.5	°C/W

Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM and heat-sink.

ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$, unless otherwise noted)

INVERTER PART

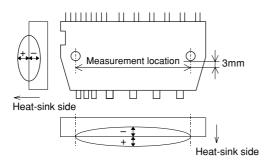
0	Б.	Condition		Limits			Unit	
Symbol Parameter			Condition		Тур.	Max.		
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	Ic = 15A, Tj = 25°C	_	1.45	1.95	.,	
VCE(Sat)	voltage	VIN = 5V	IC = 15A, Tj = 125°C	_	1.55	2.05	'	
VEC	FWD forward voltage	Tj = 25°C, -IC = 15A, VIN = 0V			1.50	2.00	V	
ton		VCC = 300V, VD = VDB = 15V IC = 15A, Tj = 125°C, VIN = 0 ↔ 5V		0.60	1.20	1.80	μs	
trr				_	0.30	_	μs	
tc(on)	Switching times			_	0.40	0.60	μs	
toff		Inductive load (upper-le	Inductive load (upper-lower arm)		1.50	2.10	μs	
tc(off)				_	0.50	0.80	μs	
ICES	Collector-emitter cut-off	Voc. Voca	Tj = 25°C	_	_	1	mA	
1.020	current VCE = VCES		Tj = 125°C	_	_	10	IIIA	

CONTROL (PROTECTION) PART

Symbol	Parameter		Condition		Limits			Unit	
Syllibol	Farameter		Condi	uon	Min.	Тур.	Max.	Offit	
		VD = VDB = 15V	Total of V	P1-VNC, VN1-VNC	_	_	5.00		
In	Circuit ourrent	VIN = 5V	Vufb-Vu	FS, VVFB-VVFS, VWFB-VWFS	_	_	0.40	1 \	
ID Circuit current	VD = VDB = 15V	Total of V	P1-VNC, VN1-VNC	_	_	7.00	mA		
		VIN = 0V	VUFB-VUF	FS, VVFB-VVFS, VWFB-VWFS	_	_	0.55		
VFOH	Fault output voltage	Vsc = 0V, Fo circuit pull-up to 5V with $10k\Omega$		4.9	_	_	V		
VFOL	Fault output voltage	VSC = 1V, IFO = 1mA		_	_	0.95	V		
VSC(ref)	Short circuit trip level	$T_f = -20 \sim 100 \circ C, V_D = 15V$ (Note 4)		0.45	_	0.52	V		
lin	Input current	VIN = 5V	VIN = 5V		1.0	1.5	2.0	mA	
UVDBt			T	rip level	10.0	_	12.0	V	
UVDBr	Control supply under-voltage	T _i ≤ 125°C	R	Reset level	10.5	_	12.5	V	
UVDt	protection	1] \(\) 125 C	Т	rip level	10.3	_	12.5	٧	
UVDr			R	Reset level	10.8	_	13.0	V	
tFO	Fault output pulse width	CFO = 22nF (Note 5)		1.0	1.8	_	ms		
Vth(on)	ON threshold voltage	Applied between LID V/D W/D V/N/D LIN V/N W/N/N/D		2.1	2.3	2.6	٧		
Vth(off)	OFF threshold voltage	Abblied permeeti C	Applied between UP, VP, WP-Vnc, UN, VN, WN-Vnc		0.8	1.4	2.1	V	

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the current rating.

^{5:} Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure. The fault output pulse width tFO depends on the capacitance value of CFO according to the following approximate equation: CFO = 12.2 X 10⁻⁶ X tFO [F].



TRANSFER-MOLD TYPE **INSULATED TYPE**

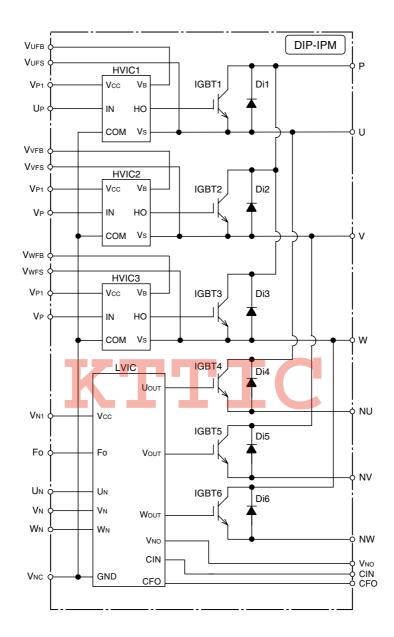
MECHANICAL CHARACTERISTICS AND RATINGS

Darameter	Condition		Limits			Linit
Parameter	Condition			Тур.	Max.	Unit
Mounting torque	Mounting screw : M3	0.59	_	0.98	N·m	
Weight			_	20	_	g
Heat-sink flatness	(Note 6)				100	μm

Note 6: Measurement point of heat-sink flatness

RECOMMENDED OPERATION CONDITIONS

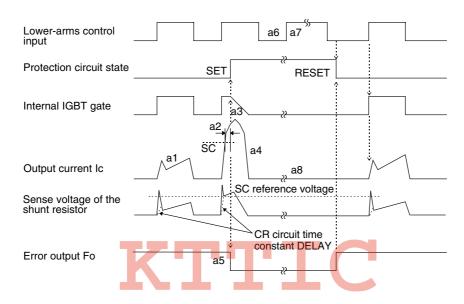
				Dass			
Symbol	Parameter	Condition			mmended		Unit
-,				Min.	Тур.	Max.	
Vcc	Supply voltage	Applied between P-NU, NV, NW		0	300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VN0	С	13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between VUFB-VUFS, VVFB-	-Vvfs, Vwfb-Vwfs	13.0	15.0	18.5	V
ΔVD, ΔVDB	Control supply variation			-1	_	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tf ≤ 100°C		2.0	_	_	μs
fPWM	PWM input frequency	Tf ≤ 100°C, Tj ≤ 125°C		_	_	20	kHz
	Allowable r.m.s. current	VCC = 300V, VD = VDB = 15V,	fpwm = 5kHz	_	_	7.5	
lo		P.F = 0.8, sinusoidal output					Arms
		Tf ≤ 100°C, Tj ≤ 125°C (Note 7)	fPWM = 15kHz	_	_	4.8	
PWIN(on)			(Note 8)	0.3	_	_	
		200 ≤ Vcc ≤ 350V,		0.5			
		13.5 ≤ VD ≤ 16.5V,	Below rated current	0.5	_		
D/V/IVI/~ft/	Allowable minimum input pulse width	13.0 ≤ VDB ≤ 18.5V,	Between rated current and	0.0			μs
PWIN(off)	puise width	–20°C ≤ Tf ≤ 100°C,	1.7 times of rated current	2.0	_	_	
		N-line wiring inductance less than	Between 1.7 times and	2.6			
		10nH (Note 9)	2.0 times of rated current	2.0	_		
VNC	VNC variation	between VNC-NU, NV, NW (including	ng surge)	-5.0	_	5.0	V


Note 7: The allowable r.m.s. current value depends on the actual application conditions.

8: The input pulse width less than PWIN(on) might make no response.

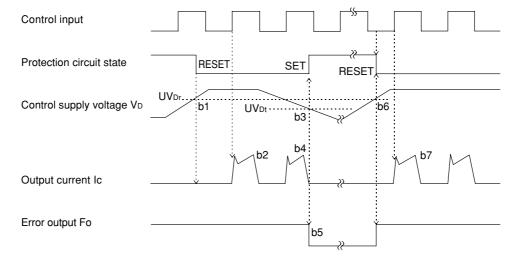
^{9:} IPM might not work properly or make response for the input signal with OFF pulse width less than PWIN(off). Please refer to Fig.5.

Fig. 2 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 3 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS


[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo timer operation starts: The pulse width of the Fo signal is set by the external capacitor CFo.
- a6. Input "L": IGBT OFF.
- a7. Input "H": IGBT ON.
- a8. IGBT OFF in spite of input "H".

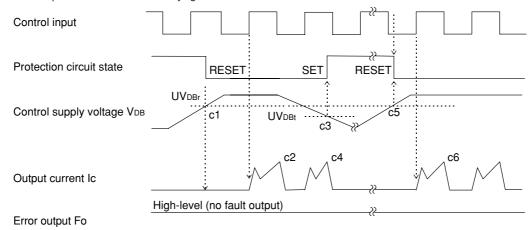
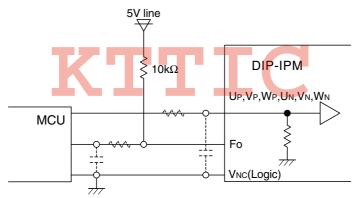
[B] Under-Voltage Protection (Lower-arm, UVD)

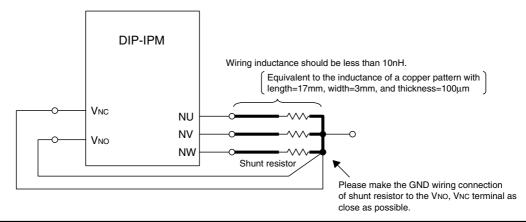
- b1. Control supply voltage rises: After the voltage level reaches UVDr, the circuits start to operate when next input is applied.
- b2. Normal operation: IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo operation starts.
- b6. Under voltage reset (UVDr).
- b7. Normal operation: IGBT ON and carrying current.

TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (Upper-arm, UVDB)

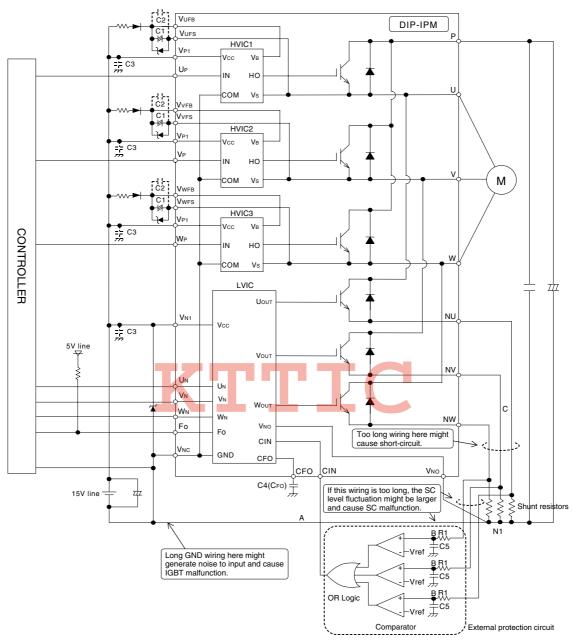
- c1. Control supply voltage rises: After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation: IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr)
- c6. Normal operation: IGBT ON and carrying current.


Fig. 4 RECOMMENDED CPU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a $2.5k\Omega$ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.


Fig. 5 WIRING CONNECTION OF SHUNT RESISTOR

TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 6 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering

- Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2cm)
 - 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler or transformer isolation is possible.
 - 3: Fo output is open drain type. This signal line should be pulled up to the positive side of the 5V power supply with approximately $10k\Omega$ resistor.
 - 4: Fo output pulse width is determined by the external capacitor between CFO and VNc terminals (CFO). (Example: CFO = $22 \text{ nF} \rightarrow \text{tFO} = 1.8 \text{ ms} \text{ (typ.)}$) 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a $2.5 \text{k}\Omega$ (min) pull-down resistor. Therefore, when
 - using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.
 - 6: To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
 - 7: Please set the C5R1 time constant in the range 1.5~2μs.
 - 8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
 - 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P-N1 pins is recommended.
 - 10: To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals.
 - 11: The reference voltage Viref of comparator should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).
 - 12: OR logic output level should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).

