# KTTIC http://www.kttic.com

## **Features**

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
  - 130 Powerful Instructions Most Single Clock Cycle Execution
  - 32 x 8 General Purpose Working Registers
  - Fully Static Operation
  - Up to 16 MIPS Throughput at 16 MHz
  - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
  - 16K Bytes of In-System Self-programmable Flash program memory
  - 512 Bytes EEPROM
  - 1K Bytes Internal SRAM
  - Write/Erase cyles: 10,000 Flash/100,000 EEPROM(1)(3)
  - Data retention: 20 years at 85°C/100 years at 25°C(2)(3)
  - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program

**True Read-While-Write Operation** 

- Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 compliant) Interface
  - Boundary-scan Capabilities According to the JTAG Standard
  - Extensive On-chip Debug Support
  - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- · Peripheral Features
  - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
  - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
  - Real Time Counter with Separate Oscillator
  - Four PWM Channels
  - 8-channel, 10-bit ADC
  - Programmable Serial USART
  - Master/Slave SPI Serial Interface
  - Universal Serial Interface with Start Condition Detector
  - Programmable Watchdog Timer with Separate On-chip Oscillator
  - On-chip Analog Comparator
  - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
  - Power-on Reset and Programmable Brown-out Detection
  - Internal Calibrated Oscillator
  - External and Internal Interrupt Sources
  - Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
  - 54 Programmable I/O Lines
  - 64-lead TQFP and 64-pad QFN/MLF
- · Speed Grade:
  - ATmega165PV: 0 4 MHz @ 1.8 5.5V, 0 8 MHz @ 2.7 5.5V
  - ATmega165P: 0 8 MHz @ 2.7 5.5V, 0 16 MHz @ 4.5 5.5V
- Temperature range:
  - -40°C to 85°C Industrial
- Ultra-Low Power Consumption
  - Active Mode:
    - 1 MHz, 1.8V: 330 µA

32 kHz, 1.8V: 10 µA (including Oscillator)

- Power-down Mode:
  - 0.1 µA at 1.8V
- Power-save Mode:

0.6 µA at 1.8V(Including 32 kHz RTC)

Notes: 1. Worst case temperature. Guaranteed after last write cycle.

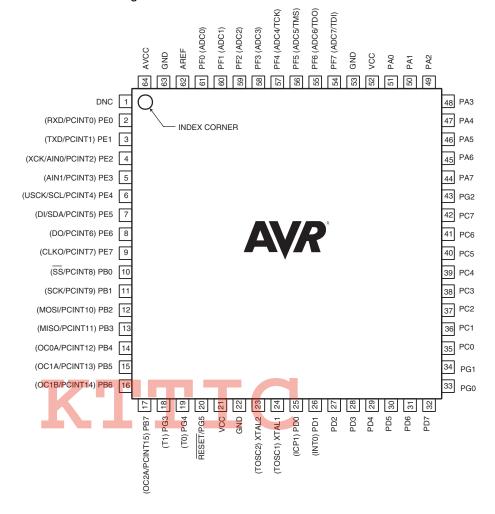
- 2. Failure rate less than 1 ppm.
- 3. Characterized through accelerated tests.



8-bit **AVR**® Microcontroller with 16K Bytes In-System Programmable Flash

ATmega165P ATmega165PV

**Preliminary** 


**Summary** 

8019IS-AVR-08/07



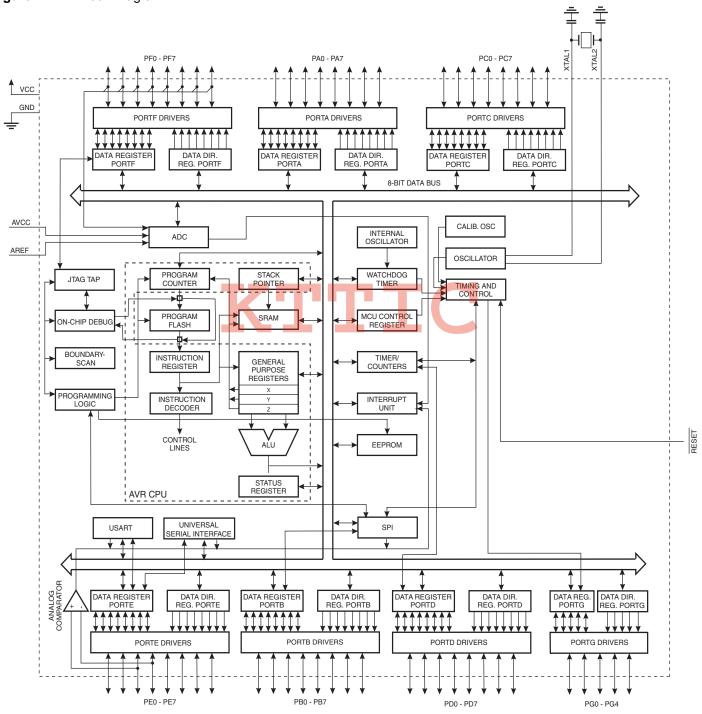
# 1. Pin Configurations

Figure 1-1. Pinout ATmega165P



Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

## 1.1 Disclaimer


Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

## **Overview** 2.

The ATmega165P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega165P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

## 2.1 **Block Diagram**

Figure 2-1. **Block Diagram** 



The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega165P provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 53 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega165P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega165P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

# 2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

## 2.2.3 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.





#### 2.2.4 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega165P as listed on "Alternate Functions of Port B" on page 70.

#### 2.2.5 Port C (PC7:PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

### 2.2.6 Port D (PD7:PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega165P as listed on "Alternate Functions of Port D" on page 73.

#### 2.2.7 Port E (PE7:PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega165P as listed on "Alternate Functions of Port E" on page 74.

#### 2.2.8 Port F (PF7:PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface, see "Alternate Functions of Port F" on page 77



## 2.2.9 Port G (PG5:PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega165P as listed on page 79.

## 2.2.10 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 26-4 on page 306. Shorter pulses are not guaranteed to generate a reset.

2.2.11 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.12 XTAL2

Output from the inverting Oscillator amplifier.

2.2.13 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to  $V_{CC}$ , even if the ADC is not used. If the ADC is used, it should be connected to  $V_{CC}$  through a low-pass filter.

2.2.14 AREF

This is the analog reference pin for the A/D Converter.

## 3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.



# 4. Register Summary

| Address          | Name                 | Bit 7  | Bit 6  | Bit 5  | Bit 4       | Bit 3            | Bit 2        | Bit 1               | Bit 0  | Page  |
|------------------|----------------------|--------|--------|--------|-------------|------------------|--------------|---------------------|--------|-------|
|                  |                      |        | 5.0    |        |             |                  | 5.1.2        |                     |        | . ugo |
| (0xFF)<br>(0xFE) | Reserved<br>Reserved | _      | _      |        | _           | _                | _            | _                   | _      |       |
| (0xFE)           | Reserved             | _      |        |        |             |                  |              |                     |        |       |
| (0xFC)           | Reserved             | _      | _      |        | _           | _                | _            | _                   | _      |       |
| (0xFB)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xFA)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xF9)           | Reserved             | -      | -      | -      | _           | _                | -            | -                   | _      |       |
| (0xF8)           | Reserved             | -      | -      | =      | -           | -                | -            | -                   | -      |       |
| (0xF7)           | Reserved             | -      | -      | -      | -           | _                | -            | -                   | -      |       |
| (0xF6)           | Reserved             | -      | -      | ı      | -           | -                | -            | -                   | -      |       |
| (0xF5)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      |       |
| (0xF4)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      |       |
| (0xF3)           | Reserved             | -      | -      | _      | -           | _                | -            | -                   | -      |       |
| (0xF2)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      |       |
| (0xF1)           | Reserved             | -      | -      | -      | -           | _                | -            | -                   | -      |       |
| (0xF0)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | _      |       |
| (0xEF)           | Reserved             | _      | _      | =      | _           | _                | _            | -                   | _      |       |
| (0xEE)           | Reserved             | _      | _      | _      | -           | _                | _            | _                   | -      |       |
| (0xED)<br>(0xEC) | Reserved             | -      | -      |        | -           | -                | _            | _                   | _      |       |
| (0xEC)           | Reserved<br>Reserved | _      |        | _      | _           | _                | _            |                     |        |       |
| (0xEA)           | Reserved             |        |        |        |             |                  |              |                     |        |       |
| (0xE9)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   |        |       |
| (0xE8)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xE7)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xE6)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xE5)           | Reserved             | -      | -      | -      | _           | _                | -            | -                   | _      |       |
| (0xE4)           | Reserved             | -      | -      | -      | -           | _                | -            | -                   | -      |       |
| (0xE3)           | Reserved             | -      | _      | _      | _           | _                | -            | -                   | _      |       |
| (0xE2)           | Reserved             | -      | -      | _      |             | _                |              | -                   | _      |       |
| (0xE1)           | Reserved             | -      | -      |        | - 1         | -                |              | -                   | _      |       |
| (0xE0)           | Reserved             | -      |        |        |             | -                | -            | -                   | -      |       |
| (0xDF)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      |       |
| (0xDE)           | Reserved             | -      | -      | _      | _           | _                |              | -                   | -      |       |
| (0xDD)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      |       |
| (0xDC)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xDB)           | Reserved             | -      | -      | _      | _           | _                | -            | -                   | -      |       |
| (0xDA)           | Reserved             | _      | _      | _      | _           | _                | -            | _                   | _      |       |
| (0xD9)<br>(0xD8) | Reserved<br>Reserved | _      | _      | _      | _           | _                | _            | _                   | -      |       |
| (0xD8)<br>(0xD7) | Reserved             |        |        |        |             |                  |              |                     |        |       |
| (0xD6)           | Reserved             | _      | _      |        | _           | _                | _            | _                   | _      |       |
| (0xD5)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xD4)           | Reserved             | _      | _      | _      | _           | _                | _            | _                   | _      |       |
| (0xD3)           | Reserved             | -      | -      | _      | -           | -                | -            | -                   | -      |       |
| (0xD2)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      |       |
| (0xD1)           | Reserved             | -      | -      | -      | -           | _                | -            | -                   | -      |       |
| (0xD0)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      | -     |
| (0xCF)           | Reserved             | -      | _      | -      | -           | _                | -            | -                   | -      |       |
| (0xCE)           | Reserved             | -      | _      | 1      | -           | -                | -            | -                   | -      |       |
| (0xCD)           | Reserved             | -      | -      | _      | _           | _                | -            | -                   | -      |       |
| (0xCC)           | Reserved             | -      | -      | -      | -           | -                | -            | -                   | -      |       |
| (0xCB)           | Reserved             | -      | _      | _      | _           | _                | _            | -                   | _      |       |
| (0xCA)           | Reserved             | -      | _      | -      | -           | -                | -            | _                   | -      |       |
| (0xC9)           | Reserved             | _      | _      | _      | _           | _                | -            | _                   | _      |       |
| (0xC8)           | Reserved             | _      | _      | _      | -           | _                | _            | _                   | _      |       |
| (0xC7)<br>(0xC6) | Reserved<br>UDR0     | _      | -      | -      | LISARTO I/C | Data Register    | -            | -                   | -      | 183   |
| (0xC5)           | UBRR0H               |        |        |        | USAKTU I/C  | Data Register    | IIQADTO Poud | Rate Register High  |        | 183   |
| (0xC4)           | UBRR0L               |        |        |        | USARTO Band | Rate Register Lo |              | vare ivedisiei Higi |        | 187   |
| (0xC4)           | Reserved             | _      | _      | -      | –           | –                | —            | _                   | _      | 107   |
| (0xC2)           | UCSR0C               | _      | UMSEL0 | UPM01  | UPM00       | USBS0            | UCSZ01       | UCSZ00              | UCPOL0 | 183   |
| (0xC1)           | UCSR0B               | RXCIE0 | TXCIE0 | UDRIE0 | RXEN0       | TXEN0            | UCSZ02       | RXB80               | TXB80  | 183   |
| (0xC0)           | UCSR0A               | RXC0   | TXC0   | UDRE0  | FE0         | DOR0             | UPE0         | U2X0                | MPCM0  | 183   |





| A -l -l          | Nome                 | D:4.7          | Dit C          | D:4 5  | D:4.4              | Dit 2                  | D:4 0     | Dit 4     | D:4 0      | Domo       |
|------------------|----------------------|----------------|----------------|--------|--------------------|------------------------|-----------|-----------|------------|------------|
| Address          | Name                 | Bit 7          | Bit 6          | Bit 5  | Bit 4              | Bit 3                  | Bit 2     | Bit 1     | Bit 0      | Page       |
| (0xBF)           | Reserved             | -              | -              | _      | -                  | _                      | _         | -         | -          |            |
| (0xBE)<br>(0xBD) | Reserved<br>Reserved | _              | _              | _      | -                  | -                      | _         | -         | _          |            |
| (0xBC)           | Reserved             | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0xBB)           | Reserved             | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0xBA)           | USIDR                |                |                |        |                    | ta Register            |           |           |            | 200        |
| (0xB9)           | USISR                | USISIF         | USIOIF         | USIPF  | USIDC              | USICNT3                | USICNT2   | USICNT1   | USICNT0    | 200        |
| (0xB8)           | USICR                | USISIE         | USIOIE         | USIWM1 | USIWM0             | USICS1                 | USICS0    | USICLK    | USITC      | 201        |
| (0xB7)           | Reserved             | -              |                | -      | _                  | _                      | _         | -         | -          |            |
| (0xB6)           | ASSR                 | -              | -              | -      | EXCLK              | AS2                    | TCN2UB    | OCR2UB    | TCR2UB     | 149        |
| (0xB5)           | Reserved             | -              | -              | -      | _                  | _                      | _         | -         | -          |            |
| (0xB4)           | Reserved             | -              | -              | -      | _                  | _                      | _         | -         | _          |            |
| (0xB3)           | OCR2A                |                |                | Tim    | ner/Counter2 Outp  | out Compare Reg        | jister A  |           |            | 148        |
| (0xB2)           | TCNT2                |                |                |        |                    | unter2 (8-bit)         | 1         | 1         | 1          | 148        |
| (0xB1)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | -          |            |
| (0xB0)           | TCCR2A               | FOC2A          | WGM20          | COM2A1 | COM2A0             | WGM21                  | CS22      | CS21      | CS20       | 146        |
| (0xAF)           | Reserved             | -              | -              | -      | -                  | _                      | -         | -         | -          |            |
| (0xAE)           | Reserved             | -              | -              | _      | _                  | _                      | _         | -         | _          |            |
| (0xAD)           | Reserved             | _              | -              | _      | _                  | _                      | -         | _         | _          |            |
| (0xAC)           | Reserved<br>Reserved | -              | -              | -      | _                  | -                      | _         | _         | _          |            |
| (0xAB)<br>(0xAA) | Reserved             | _              | _              | _      | _                  | _                      |           | _         | _          |            |
| (0xAA)<br>(0xA9) | Reserved             | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0xA9)           | Reserved             | _              | _              | _      | _                  | _                      |           | _         | _          |            |
| (0xA7)           | Reserved             | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0xA6)           | Reserved             | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0xA5)           | Reserved             | _              | -              | _      | _                  | _                      | _         | -         | _          |            |
| (0xA4)           | Reserved             | -              | -              | -      | _                  | _                      | -         | -         | _          |            |
| (0xA3)           | Reserved             | _              | -              | -      | _                  | _                      | _         | -         | _          |            |
| (0xA2)           | Reserved             | -              | -              | -      | _                  | _                      | -         | _         | _          |            |
| (0xA1)           | Reserved             | -              | -              | -      | _                  | _                      | -         | -         | -          |            |
| (0xA0)           | Reserved             | -              | -              | -      | _                  | _                      | _         | -         | -          |            |
| (0x9F)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | _          |            |
| (0x9E)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | -          |            |
| (0x9D)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | -          |            |
| (0x9C)           | Reserved             | _              |                |        | _                  |                        |           | -         | -          |            |
| (0x9B)           | Reserved             | -              | -              | -      |                    | _                      | -         | -         | -          |            |
| (0x9A)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | -          |            |
| (0x99)           | Reserved             | -              | -              | _      | _                  | _                      | _         | -         | _          |            |
| (0x98)<br>(0x97) | Reserved             | _              | _              | _      | -                  | -                      | _         | _         | _          |            |
| (0x97)           | Reserved<br>Reserved | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0x95)           | Reserved             | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0x94)           | Reserved             | _              | _              | _      | _                  | _                      | _         | _         | _          |            |
| (0x93)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | _          |            |
| (0x92)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | _          |            |
| (0x91)           | Reserved             | -              | -              | -      | _                  | -                      | _         | _         | _          |            |
| (0x90)           | Reserved             | -              | -              | -      | _                  | -                      | _         | -         | _          |            |
| (0x8F)           | Reserved             | -              | -              | -      | -                  | -                      | -         | -         | _          |            |
| (0x8E)           | Reserved             | =              | -              | =      | =                  | =                      | =         | -         | -          |            |
| (0x8D)           | Reserved             | -              | -              | -      | _                  | -                      | -         | -         | -          |            |
| (0x8C)           | Reserved             | =              | -              | _      | _                  | _                      | _         | -         | -          |            |
| (0x8B)           | OCR1BH               |                |                |        | unter1 - Output C  |                        |           |           |            | 125        |
| (0x8A)           | OCR1BL               |                |                |        | unter1 - Output C  |                        |           |           |            | 125        |
| (0x89)           | OCR1AH               |                |                |        | unter1 - Output C  |                        |           |           |            | 125        |
| (0x88)           | OCR1AL               |                |                |        | unter1 - Output C  |                        |           |           |            | 125        |
| (0x87)           | ICR1H                |                |                |        | Counter1 - Input ( |                        |           |           |            | 126        |
| (0x86)           | ICR1L                |                |                |        | Counter1 - Input ( |                        |           |           |            | 126        |
| (0x85)           | TCNT1H               |                |                |        | er/Counter1 - Cou  |                        | · ·       |           |            | 125        |
| (0x84)           | TCNT1L<br>Posonyod   | _              | _              | I im   | er/Counter1 - Cou  | unter Register Lo<br>– | w Byte _  | _         | _          | 125        |
| (0x83)           | Reserved             |                |                |        |                    |                        |           |           |            | 124        |
| (0x82)<br>(0x81) | TCCR1C<br>TCCR1B     | FOC1A<br>ICNC1 | FOC1B<br>ICES1 | -      | WGM13              | WGM12                  | -<br>CS12 | -<br>CS11 | -<br>CS10  | 124<br>123 |
| (UAOT)           | TCCR16               | COM1A1         | COM1A0         | COM1B1 | COM1B0             | - WGW12                | -         | WGM11     | WGM10      | 123        |
| (Ux8U)           |                      | , JOINITAL     | CONTIAU        | COMIDI | CONTIDU            |                        |           | I WOWIII  | ***OIVI 10 | 141        |
| (0x80)<br>(0x7F) | DIDR1                | _              | _              | _      | _                  | _                      | _         | AIN1D     | AIN0D      | 207        |



| Address                    | Name     | Bit 7    | Bit 6   | Bit 5   | Bit 4           | Bit 3             | Bit 2    | Bit 1    | Bit 0         | Page        |
|----------------------------|----------|----------|---------|---------|-----------------|-------------------|----------|----------|---------------|-------------|
| (0x7D)                     | Reserved | -        | =       | -       | -               | =                 | -        | =        | -             |             |
| (0x7C)                     | ADMUX    | REFS1    | REFS0   | ADLAR   | MUX4            | MUX3              | MUX2     | MUX1     | MUX0          | 221         |
| (0x7B)                     | ADCSRB   | -        | ACME    | -       | -               | -                 | ADTS2    | ADTS1    | ADTS0         | 206, 225    |
| (0x7A)                     | ADCSRA   | ADEN     | ADSC    | ADATE   | ADIF            | ADIE              | ADPS2    | ADPS1    | ADPS0         | 223         |
| (0x79)                     | ADCH     |          |         |         | ADC Data Re     | gister High byte  |          |          |               | 224         |
| (0x78)                     | ADCL     |          |         | 1       | ADC Data Re     | egister Low byte  | 1        |          | 1             | 224         |
| (0x77)                     | Reserved | -        | ı       | -       | -               | -                 | -        | -        | -             |             |
| (0x76)                     | Reserved | _        | _       | _       | -               | _                 | -        | -        | -             |             |
| (0x75)                     | Reserved | -        | -       | -       | -               | -                 | -        | -        | -             |             |
| (0x74)                     | Reserved | -        | _       | _       | -               | -                 | -        | -        | -             |             |
| (0x73)                     | Reserved | -        | _       | _       | _               | _                 | -        | -        | -             |             |
| (0x72)                     | Reserved | -        | -       | -       | -               | -                 | -        | -        | -             |             |
| (0x71)                     | Reserved | _        | _       | -       | -               | -                 | -        | -        | -             |             |
| (0x70)                     | TIMSK2   |          | _       | _       | _               | _                 | _        | OCIE2A   | TOIE2         | 149         |
| (0x6F)                     | TIMSK1   | -        | -       | ICIE1   | -               | -                 | OCIE1B   | OCIE1A   | TOIE1         | 126         |
| (0x6E)                     | TIMSK0   | -        | _       | -       | -               | -                 | -        | OCIE0A   | TOIE0         | 98          |
| (0x6D)                     | Reserved | -        | -       | _       | -               | -                 | -        | -        | -             |             |
| (0x6C)                     | PCMSK1   | PCINT15  | PCINT14 | PCINT13 | PCINT12         | PCINT11           | PCINT10  | PCINT9   | PCINT8        | 60          |
| (0x6B)                     | PCMSK0   | PCINT7   | PCINT6  | PCINT5  | PCINT4          | PCINT3            | PCINT2   | PCINT1   | PCINT0        | 61          |
| (0x6A)                     | Reserved | -        | _       | _       | -               | -                 | -        | -        | _             |             |
| (0x69)                     | EICRA    | -        | _       | _       | -               | -                 | -        | ISC01    | ISC00         | 59          |
| (0x68)                     | Reserved | _        | -       | _       | -               | _                 | -        | -        | -             |             |
| (0x67)                     | Reserved | -        | -       | _       | -               | _                 | -        | -        | -             |             |
| (0x66)                     | OSCCAL   |          |         | 1       | Oscillator Cal  | ibration Register | 1        |          |               | 35          |
| (0x65)                     | Reserved | -        | -       | -       | -               | -                 | -        | -        | -             |             |
| (0x64)                     | PRR      | -        | -       | -       | -               | PRTIM1            | PRSPI    | PRUSART0 | PRADC         | 42          |
| (0x63)                     | Reserved | -        | -       | -       | -               | -                 | -        | -        | -             |             |
| (0x62)                     | Reserved | -        | -       | _       | -               | _                 | -        | -        | -             |             |
| (0x61)                     | CLKPR    | CLKPCE   | _       | -       | -               | CLKPS3            | CLKPS2   | CLKPS1   | CLKPS0        | 35          |
| (0x60)                     | WDTCR    | -        | -       | _       | WDCE            | WDE               | WDP2     | WDP1     | WDP0          | 51          |
| 0x3F (0x5F)                | SREG     | 1        | T       | H       | S               | V                 | N        | Z        | С             | 10          |
| 0x3E (0x5E)                | SPH      | -        | _       | -       | -               | _                 | SP10     | SP9      | SP8           | 13          |
| 0x3D (0x5D)                | SPL      | SP7      | SP6     | SP5     | SP4             | SP3               | SP2      | SP1      | SP0           | 13          |
| 0x3C (0x5C)                | Reserved |          |         |         |                 |                   |          |          |               |             |
| 0x3B (0x5B)                | Reserved |          |         |         |                 |                   |          |          |               |             |
| 0x3A (0x5A)                | Reserved |          |         |         |                 |                   |          |          |               |             |
| 0x39 (0x59)                | Reserved |          |         |         |                 |                   |          |          |               |             |
| 0x38 (0x58)                | Reserved |          |         |         |                 |                   |          |          |               |             |
| 0x37 (0x57)                | SPMCSR   | SPMIE    | RWWSB   | -       | RWWSRE          | BLBSET            | PGWRT    | PGERS    | SPMEN         | 268         |
| 0x36 (0x56)                | Reserved | _        | -       | _       | -               | _                 | -        | -        | _             |             |
| 0x35 (0x55)                | MCUCR    | JTD      | -       | -       | PUD             | -                 | -        | IVSEL    | IVCE          | 57, 81, 253 |
| 0x34 (0x54)                | MCUSR    | -        | -       | -       | JTRF            | WDRF              | BORF     | EXTRF    | PORF          | 253         |
| 0x33 (0x53)                | SMCR     | -        | _       | -       | -               | SM2               | SM1      | SM0      | SE            | 42          |
| 0x32 (0x52)                | Reserved | -        | -       | _       | -               | -                 | -        | -        | -             |             |
| 0x31 (0x51)                | OCDR     | IDRD/OCD | OCDR6   | OCDR5   | OCDR4           | OCDR3             | OCDR2    | OCDR1    | OCDR0         | 232         |
| 0x30 (0x50)                | ACSR     | ACD      | ACBG    | ACO     | ACI             | ACIE              | ACIC     | ACIS1    | ACIS0         | 206         |
| 0x2F (0x4F)                | Reserved | -        | -       | -       | -               | -                 | _        | -        | _             |             |
| 0x2E (0x4E)                | SPDR     |          |         |         |                 | ta Register       |          |          |               | 160         |
| 0x2D (0x4D)                | SPSR     | SPIF     | WCOL    | -       | -               | =                 | -        | -        | SPI2X         | 159         |
| 0x2C (0x4C)                | SPCR     | SPIE     | SPE     | DORD    | MSTR            | CPOL              | CPHA     | SPR1     | SPR0          | 158         |
| 0x2B (0x4B)                | GPIOR2   |          |         |         |                 | se I/O Register 2 |          |          |               | 26          |
| 0x2A (0x4A)                | GPIOR1   |          |         | 1       | General Purpo   | se I/O Register 1 | 1        |          | 1             | 26          |
| 0x29 (0x49)                | Reserved | -        | -       | -       | -               | -                 | -        | -        | -             |             |
| 0x28 (0x48)                | Reserved | -        | -       | _       | -               | -                 | -        | -        | -             |             |
| 0x27 (0x47)                | OCR0A    |          |         | Tim     | er/Counter0 Out |                   | jister A |          |               | 97          |
| 0x26 (0x46)                | TCNT0    |          |         |         |                 | unter0 (8 Bit)    |          |          |               | 97          |
| 0x25 (0x45)                | Reserved | -        | -       | -       | -               | -                 | -        | -        | _             |             |
| 0x24 (0x44)                | TCCR0A   | FOC0A    | WGM00   | COM0A1  | COM0A0          | WGM01             | CS02     | CS01     | CS00          | 95          |
| 0x23 (0x43)                | GTCCR    | TSM      | -       | -       | -               | -                 | -        | PSR2     | PSR10         | 130, 150    |
| 0x22 (0x42)                | EEARH    | -        | -       | _       | -               | _                 | -        | -        | EEAR8         | 25          |
| 0x21 (0x41)                | EEARL    |          |         |         | EEPROM Addres   |                   | yte      |          |               | 25          |
| 0x20 (0x40)                | EEDR     |          |         |         | EEPROM          | Data Register     | 1        | •        |               | 25          |
| 0x1F (0x3F)                | EECR     | -        | -       | -       | -               | EERIE             | EEMWE    | EEWE     | EERE          | 25          |
| 0x1E (0x3E)                | GPIOR0   |          |         |         | General Purpo   | se I/O Register 0 |          |          |               | 26          |
| UXIE (UXSE)                |          |          |         |         |                 |                   |          |          |               |             |
| 0x1E (0x3E)<br>0x1D (0x3D) | EIMSK    | PCIE1    | PCIE0   | _       | -               | -                 | -        | -        | INT0<br>INTF0 | 59          |





| Address     | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Page |
|-------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| 0x1B (0x3B) | Reserved | -      | _      | -      | _      | _      | -      | -      | -      |      |
| 0x1A (0x3A) | Reserved | -      | -      | -      | -      | -      |        | -      | -      |      |
| 0x19 (0x39) | Reserved | -      | -      | -      | -      | -      | _      | -      | -      |      |
| 0x18 (0x38) | Reserved | _      | -      | _      | -      | -      | _      | -      | -      |      |
| 0x17 (0x37) | TIFR2    | -      | -      | -      | -      | -      | -      | OCF2A  | TOV2   | 149  |
| 0x16 (0x36) | TIFR1    | -      | -      | ICF1   | -      | -      | OCF1B  | OCF1A  | TOV1   | 127  |
| 0x15 (0x35) | TIFR0    | _      | -      | _      | -      | -      | _      | OCF0A  | TOV0   | 98   |
| 0x14 (0x34) | PORTG    | -      | -      | PORTG5 | PORTG4 | PORTG3 | PORTG2 | PORTG1 | PORTG0 | 83   |
| 0x13 (0x33) | DDRG     | -      | -      | DDG5   | DDG4   | DDG3   | DDG2   | DDG1   | DDG0   | 83   |
| 0x12 (0x32) | PING     | -      | _      | PING5  | PING4  | PING3  | PING2  | PING1  | PING0  | 83   |
| 0x11 (0x31) | PORTF    | PORTF7 | PORTF6 | PORTF5 | PORTF4 | PORTF3 | PORTF2 | PORTF1 | PORTF0 | 83   |
| 0x10 (0x30) | DDRF     | DDF7   | DDF6   | DDF5   | DDF4   | DDF3   | DDF2   | DDF1   | DDF0   | 83   |
| 0x0F (0x2F) | PINF     | PINF7  | PINF6  | PINF5  | PINF4  | PINF3  | PINF2  | PINF1  | PINF0  | 83   |
| 0x0E (0x2E) | PORTE    | PORTE7 | PORTE6 | PORTE5 | PORTE4 | PORTE3 | PORTE2 | PORTE1 | PORTE0 | 82   |
| 0x0D (0x2D) | DDRE     | DDE7   | DDE6   | DDE5   | DDE4   | DDE3   | DDE2   | DDE1   | DDE0   | 82   |
| 0x0C (0x2C) | PINE     | PINE7  | PINE6  | PINE5  | PINE4  | PINE3  | PINE2  | PINE1  | PINE0  | 83   |
| 0x0B (0x2B) | PORTD    | PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTD0 | 82   |
| 0x0A (0x2A) | DDRD     | DDD7   | DDD6   | DDD5   | DDD4   | DDD3   | DDD2   | DDD1   | DDD0   | 82   |
| 0x09 (0x29) | PIND     | PIND7  | PIND6  | PIND5  | PIND4  | PIND3  | PIND2  | PIND1  | PIND0  | 82   |
| 0x08 (0x28) | PORTC    | PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTC0 | 82   |
| 0x07 (0x27) | DDRC     | DDC7   | DDC6   | DDC5   | DDC4   | DDC3   | DDC2   | DDC1   | DDC0   | 82   |
| 0x06 (0x26) | PINC     | PINC7  | PINC6  | PINC5  | PINC4  | PINC3  | PINC2  | PINC1  | PINC0  | 82   |
| 0x05 (0x25) | PORTB    | PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTB0 | 81   |
| 0x04 (0x24) | DDRB     | DDB7   | DDB6   | DDB5   | DDB4   | DDB3   | DDB2   | DDB1   | DDB0   | 81   |
| 0x03 (0x23) | PINB     | PINB7  | PINB6  | PINB5  | PINB4  | PINB3  | PINB2  | PINB1  | PINB0  | 81   |
| 0x02 (0x22) | PORTA    | PORTA7 | PORTA6 | PORTA5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 | PORTA0 | 81   |
| 0x01 (0x21) | DDRA     | DDA7   | DDA6   | DDA5   | DDA4   | DDA3   | DDA2   | DDA1   | DDA0   | 81   |
| 0x00 (0x20) | PINA     | PINA7  | PINA6  | PINA5  | PINA4  | PINA3  | PINA2  | PINA1  | PINA0  | 81   |

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega165P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.



# 5. Instruction Set Summary

| Mnemonics        | Operands          | Description                                                            | Operation                                                                                    | Flags      | #Clocks |
|------------------|-------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------|---------|
| ARITHMETIC AND I | LOGIC INSTRUCTION | S                                                                      |                                                                                              |            | •       |
| ADD              | Rd, Rr            | Add two Registers                                                      | Rd ← Rd + Rr                                                                                 | Z,C,N,V,H  | 1       |
| ADC              | Rd, Rr            | Add with Carry two Registers                                           | $Rd \leftarrow Rd + Rr + C$                                                                  | Z,C,N,V,H  | 1       |
| ADIW             | Rdl,K             | Add Immediate to Word                                                  | Rdh:Rdl ← Rdh:Rdl + K                                                                        | Z,C,N,V,S  | 2       |
| SUB              | Rd, Rr            | Subtract two Registers                                                 | Rd ← Rd - Rr                                                                                 | Z,C,N,V,H  | 1       |
| SUBI             | Rd, K             | Subtract Constant from Register                                        | $Rd \leftarrow Rd - K$                                                                       | Z,C,N,V,H  | 1       |
| SBC              | Rd, Rr            | Subtract with Carry two Registers                                      | $Rd \leftarrow Rd - Rr - C$                                                                  | Z,C,N,V,H  | 1       |
| SBCI             | Rd, K             | Subtract with Carry Constant from Reg.                                 | $Rd \leftarrow Rd - K - C$                                                                   | Z,C,N,V,H  | 1       |
| SBIW             | Rdl,K             | Subtract Immediate from Word                                           | Rdh:Rdl ← Rdh:Rdl - K                                                                        | Z,C,N,V,S  | 2       |
| AND              | Rd, Rr            | Logical AND Registers                                                  | $Rd \leftarrow Rd \bullet Rr$                                                                | Z,N,V      | 1       |
| ANDI             | Rd, K             | Logical AND Register and Constant                                      | $Rd \leftarrow Rd \bullet K$                                                                 | Z,N,V      | 1       |
| OR               | Rd, Rr            | Logical OR Registers                                                   | $Rd \leftarrow Rd \vee Rr$                                                                   | Z,N,V      | 1       |
| ORI              | Rd, K             | Logical OR Register and Constant                                       | $Rd \leftarrow Rd \vee K$                                                                    | Z,N,V      | 1       |
| EOR              | Rd, Rr            | Exclusive OR Registers                                                 | $Rd \leftarrow Rd \oplus Rr$                                                                 | Z,N,V      | 1       |
| COM              | Rd                | One's Complement                                                       | $Rd \leftarrow 0xFF - Rd$                                                                    | Z,C,N,V    | 1       |
| NEG              | Rd                | Two's Complement                                                       | $Rd \leftarrow 0x00 - Rd$                                                                    | Z,C,N,V,H  | 1       |
| SBR              | Rd,K              | Set Bit(s) in Register                                                 | $Rd \leftarrow Rd \vee K$                                                                    | Z,N,V      | 1       |
| CBR              | Rd,K              | Clear Bit(s) in Register                                               | $Rd \leftarrow Rd \bullet (0xFF - K)$                                                        | Z,N,V      | 1       |
| INC              | Rd                | Increment                                                              | Rd ← Rd + 1                                                                                  | Z,N,V      | 1       |
| DEC              | Rd                | Decrement                                                              | Rd ← Rd – 1                                                                                  | Z,N,V      | 1       |
| TST              | Rd                | Test for Zero or Minus                                                 | $Rd \leftarrow Rd \bullet Rd$                                                                | Z,N,V      | 1       |
| CLR              | Rd                | Clear Register                                                         | $Rd \leftarrow Rd \oplus Rd$                                                                 | Z,N,V      | 1       |
| SER              | Rd                | Set Register                                                           | Rd ← 0xFF                                                                                    | None       | 1       |
| MUL              | Rd, Rr            | Multiply Unsigned                                                      | R1:R0 ← Rd x Rr                                                                              | Z,C        | 2       |
| MULS             | Rd, Rr            | Multiply Signed                                                        | R1:R0 ← Rd x Rr                                                                              | Z,C        | 2       |
| MULSU            | Rd, Rr            | Multiply Signed with Unsigned                                          | R1:R0 ← Rd x Rr                                                                              | Z,C        | 2       |
| FMUL             | Rd, Rr            | Fractional Multiply Unsigned                                           | R1:R0 ← (Rd x Rr) << 1                                                                       | Z,C        | 2       |
| FMULS            | Rd, Rr            | Fractional Multiply Signed                                             | R1:R0 ← (Rd x Rr) << 1                                                                       | Z,C        | 2       |
| FMULSU           | Rd, Rr            | Fractional Multiply Signed with Unsigned                               | $R1:R0 \leftarrow (Rd \times Rr) << 1$                                                       | Z,C        | 2       |
| BRANCH INSTRUC   |                   |                                                                        |                                                                                              | · ·        | •       |
| RJMP             | k                 | Relative Jump                                                          | PC ← PC + k + 1                                                                              | None       | 2       |
| IJMP             |                   | Indirect Jump to (Z)                                                   | PC ← Z                                                                                       | None       | 2       |
| JMP              | k                 | Direct Jump                                                            | PC ← k                                                                                       | None       | 3       |
| RCALL            | k                 | Relative Subroutine Call                                               | PC ← PC + k + 1                                                                              | None       | 3       |
| ICALL            |                   | Indirect Call to (Z)                                                   | PC ← Z                                                                                       | None       | 3       |
| CALL             | k                 | Direct Subroutine Call                                                 | PC ← k                                                                                       | None       | 4       |
| RET              |                   | Subroutine Return                                                      | PC ← STACK                                                                                   | None       | 4       |
| RETI             |                   | Interrupt Return                                                       | PC ← STACK                                                                                   | 1          | 4       |
| CPSE             | Rd,Rr             | Compare, Skip if Equal                                                 | if (Rd = Rr) PC ← PC + 2 or 3                                                                | None       | 1/2/3   |
| CP               | Rd,Rr             | Compare                                                                | Rd – Rr                                                                                      | Z, N,V,C,H | 1       |
| CPC              | Rd,Rr             | Compare with Carry                                                     | Rd – Rr – C                                                                                  | Z, N,V,C,H | 1       |
| CPI              | Rd,K              | Compare Register with Immediate                                        | Rd – K                                                                                       | Z, N,V,C,H | 1       |
| SBRC             | Rr, b             | Skip if Bit in Register Cleared                                        | if $(Rr(b)=0) PC \leftarrow PC + 2 \text{ or } 3$                                            | None       | 1/2/3   |
| SBRS             | Rr, b             | Skip if Bit in Register Gleared                                        | if $(Rr(b)=0) PC \leftarrow PC + 2 \text{ or } 3$                                            | None       | 1/2/3   |
| SBIC             | P, b              | Skip if Bit in I/O Register Sect                                       | if $(P(b)=0)$ PC $\leftarrow$ PC + 2 or 3                                                    | None       | 1/2/3   |
| SBIS             | P, b              | Skip if Bit in I/O Register Cleared Skip if Bit in I/O Register is Set | if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$                                             | None       | 1/2/3   |
| BRBS             | s, k              | Branch if Status Flag Set                                              | if (SREG(s) = 1) then PC←PC+k + 1                                                            | None       | 1/2/3   |
| BRBC             | s, k              | Branch if Status Flag Cleared                                          | if (SREG(s) = 0) then PC←PC+k + 1                                                            | None       | 1/2     |
| BREQ             | k                 | Branch if Equal                                                        | if $(Z = 1)$ then $PC \leftarrow PC + k + 1$                                                 |            | 1/2     |
| BRNE             | k                 | Branch if Not Equal                                                    | if $(Z = 1)$ then $PC \leftarrow PC + k + 1$                                                 | None       | 1/2     |
|                  |                   | · · · · · · · · · · · · · · · · · · ·                                  |                                                                                              | None       |         |
| BRCS             | k                 | Branch if Carry Cleared                                                | if $(C = 1)$ then $PC \leftarrow PC + k + 1$                                                 | None       | 1/2     |
| BRCC             | k                 | Branch if Carry Cleared                                                | if $(C = 0)$ then $PC \leftarrow PC + k + 1$<br>if $(C = 0)$ then $PC \leftarrow PC + k + 1$ | None       | 1/2     |
| BRSH             | k                 | Branch if Same or Higher                                               | if $(C = 0)$ then $PC \leftarrow PC + k + 1$                                                 | None       | 1/2     |
| BRLO             | k                 | Branch if Lower                                                        | if (C = 1) then PC ← PC + k + 1                                                              | None       | 1/2     |
| BRMI             | k                 | Branch if Minus                                                        | if (N = 1) then PC ← PC + k + 1                                                              | None       | 1/2     |
| BRPL             | k                 | Branch if Plus                                                         | if (N = 0) then PC ← PC + k + 1                                                              | None       | 1/2     |
| BRGE             | k                 | Branch if Greater or Equal, Signed                                     | if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$                                        | None       | 1/2     |
| BRLT             | k                 | Branch if Less Than Zero, Signed                                       | if (N ⊕ V= 1) then PC ← PC + k + 1                                                           | None       | 1/2     |
| BRHS             | k                 | Branch if Half Carry Flag Set                                          | if (H = 1) then PC $\leftarrow$ PC + k + 1                                                   | None       | 1/2     |
| BRHC             | k                 | Branch if Half Carry Flag Cleared                                      | if (H = 0) then PC ← PC + k + 1                                                              | None       | 1/2     |
| BRTS             | k                 | Branch if T Flag Set                                                   | if (T = 1) then PC $\leftarrow$ PC + k + 1                                                   | None       | 1/2     |
| BRTC             | k                 | Branch if T Flag Cleared                                               | if (T = 0) then PC ← PC + k + 1                                                              | None       | 1/2     |
| BRVS             | k                 | Branch if Overflow Flag is Set                                         | if $(V = 1)$ then $PC \leftarrow PC + k + 1$                                                 | None       | 1/2     |





| Mnemonics                             | Operands                 | Description                                                                                                                    | Operation                                                                                                                           | Flags                | #Clocks          |
|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
| BRVC                                  | k                        | Branch if Overflow Flag is Cleared                                                                                             | if (V = 0) then PC ← PC + k + 1                                                                                                     | None                 | 1/2              |
| BRIE                                  | k                        | Branch if Interrupt Enabled                                                                                                    | if ( I = 1) then PC ← PC + k + 1                                                                                                    | None                 | 1/2              |
| BRID                                  | k                        | Branch if Interrupt Disabled                                                                                                   | if ( I = 0) then PC $\leftarrow$ PC + k + 1                                                                                         | None                 | 1/2              |
| BIT AND BIT-TEST                      | INSTRUCTIONS             |                                                                                                                                |                                                                                                                                     |                      | _                |
| SBI                                   | P,b                      | Set Bit in I/O Register                                                                                                        | I/O(P,b) ← 1                                                                                                                        | None                 | 2                |
| CBI                                   | P,b                      | Clear Bit in I/O Register                                                                                                      | I/O(P,b) ← 0                                                                                                                        | None                 | 2                |
| LSL                                   | Rd                       | Logical Shift Left                                                                                                             | $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$                                                                                      | Z,C,N,V              | 1                |
| LSR                                   | Rd                       | Logical Shift Right                                                                                                            | $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$                                                                                      | Z,C,N,V              | 1                |
| ROL                                   | Rd                       | Rotate Left Through Carry                                                                                                      | $Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$                                                                       | Z,C,N,V              | 1                |
| ROR                                   | Rd                       | Rotate Right Through Carry                                                                                                     | $Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$                                                                       | Z,C,N,V              | 1                |
| ASR                                   | Rd                       | Arithmetic Shift Right                                                                                                         | $Rd(n) \leftarrow Rd(n+1), n=06$                                                                                                    | Z,C,N,V              | 1                |
| SWAP                                  | Rd                       | Swap Nibbles                                                                                                                   | $Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$                                                                                | None                 | 1                |
| BSET                                  | S                        | Flag Set                                                                                                                       | SREG(s) ← 1                                                                                                                         | SREG(s)              | 1                |
| BCLR                                  | S                        | Flag Clear                                                                                                                     | SREG(s) ← 0                                                                                                                         | SREG(s)              | 1                |
| BST                                   | Rr, b                    | Bit Store from Register to T                                                                                                   | $T \leftarrow Rr(b)$                                                                                                                | T                    | 1                |
| BLD                                   | Rd, b                    | Bit load from T to Register                                                                                                    | Rd(b) ← T                                                                                                                           | None                 | 1                |
| SEC                                   |                          | Set Carry                                                                                                                      | C ← 1                                                                                                                               | C                    | 1                |
| CLC                                   |                          | Clear Carry                                                                                                                    | C ← 0                                                                                                                               | C                    | 1                |
| SEN                                   |                          | Set Negative Flag                                                                                                              | N ← 1                                                                                                                               | N                    | 1 1              |
| CLN                                   |                          | Clear Negative Flag                                                                                                            | N ← 0                                                                                                                               | N 7                  | 1                |
| SEZ                                   |                          | Set Zero Flag                                                                                                                  | Z←1                                                                                                                                 | Z                    | 1 1              |
| CLZ                                   |                          | Clear Zero Flag                                                                                                                | Z ← 0                                                                                                                               |                      | 1                |
| SEI                                   |                          | Global Interrupt Enable                                                                                                        | 1←1                                                                                                                                 | 1                    | 1 1              |
| SES                                   |                          | Global Interrupt Disable                                                                                                       | I ← 0<br>S ← 1                                                                                                                      | S                    | 1 1              |
|                                       |                          | Set Signed Test Flag  Clear Signed Test Flag                                                                                   | S ← 0                                                                                                                               | S                    | 1                |
| SEV                                   |                          | Set Twos Complement Overflow.                                                                                                  | V ← 1                                                                                                                               | V                    | 1                |
| CLV                                   |                          | Clear Twos Complement Overflow                                                                                                 | V ← 1<br>V ← 0                                                                                                                      | V                    | 1                |
| SET                                   |                          | Set T in SREG                                                                                                                  | T ← 1                                                                                                                               | T                    | 1                |
| CLT                                   |                          | Clear T in SREG                                                                                                                | T ← 0                                                                                                                               | T                    | 1                |
| SEH                                   |                          | Set Half Carry Flag in SREG                                                                                                    | H ← 1                                                                                                                               | Н                    | 1                |
| CLH                                   |                          | Clear Half Carry Flag in SREG                                                                                                  | H ← 0                                                                                                                               | Н                    | 1                |
| DATA TRANSFER I                       | NSTRUCTIONS              | ,                                                                                                                              |                                                                                                                                     | 1 11                 |                  |
| MOV                                   | Rd, Rr                   | Move Between Registers                                                                                                         | Rd ← Rr                                                                                                                             | None                 | 1                |
| MOVW                                  | Rd, Rr                   | Copy Register Word                                                                                                             | Rd+1:Rd ← Rr+1:Rr                                                                                                                   | None                 | 1                |
| LDI                                   | Rd, K                    | Load Immediate                                                                                                                 | Rd ← K                                                                                                                              | None                 | 1                |
| LD                                    | Rd, X                    | Load Indirect                                                                                                                  | $Rd \leftarrow (X)$                                                                                                                 | None                 | 2                |
| LD                                    | Rd, X+                   | Load Indirect and Post-Inc.                                                                                                    | $Rd \leftarrow (X), X \leftarrow X + 1$                                                                                             | None                 | 2                |
| LD                                    | Rd, - X                  | Load Indirect and Pre-Dec.                                                                                                     | $X \leftarrow X - 1$ , $Rd \leftarrow (X)$                                                                                          | None                 | 2                |
| LD                                    | Rd, Y                    | Load Indirect                                                                                                                  | $Rd \leftarrow (Y)$                                                                                                                 | None                 | 2                |
| LD                                    | Rd, Y+                   | Load Indirect and Post-Inc.                                                                                                    | $Rd \leftarrow (Y), Y \leftarrow Y + 1$                                                                                             | None                 | 2                |
| LD                                    | Rd, - Y                  | Load Indirect and Pre-Dec.                                                                                                     | $Y \leftarrow Y - 1$ , $Rd \leftarrow (Y)$                                                                                          | None                 | 2                |
| LDD                                   | Rd,Y+q                   | Load Indirect with Displacement                                                                                                | $Rd \leftarrow (Y + q)$                                                                                                             | None                 | 2                |
| LD                                    | Rd, Z                    | Load Indirect                                                                                                                  | Rd ← (Z)                                                                                                                            | None                 | 2                |
| LD                                    | Rd, Z+                   | Load Indirect and Post-Inc.                                                                                                    | $Rd \leftarrow (Z), Z \leftarrow Z+1$                                                                                               | None                 | 2                |
| LD                                    | Rd, -Z                   | Load Indirect and Pre-Dec.                                                                                                     | $Z \leftarrow Z - 1$ , $Rd \leftarrow (Z)$                                                                                          | None                 | 2                |
| LDD                                   | Rd, Z+q                  | Load Indirect with Displacement                                                                                                | $Rd \leftarrow (Z + q)$                                                                                                             | None                 | 2                |
| LDS                                   | Rd, k                    | Load Direct from SRAM                                                                                                          | Rd ← (k)                                                                                                                            | None                 | 2                |
| ST                                    | X, Rr                    | Store Indirect                                                                                                                 | (X) ← Rr                                                                                                                            | None                 | 2                |
| ST                                    | X+, Rr                   | Store Indirect and Post-Inc.                                                                                                   | $(X) \leftarrow Rr, X \leftarrow X + 1$                                                                                             | None                 | 2                |
| ST                                    | - X, Rr                  | Store Indirect and Pre-Dec.                                                                                                    | $X \leftarrow X - 1$ , $(X) \leftarrow Rr$                                                                                          | None                 | 2                |
| ST                                    | Y, Rr                    | Store Indirect                                                                                                                 | (Y) ← Rr                                                                                                                            | None                 | 2                |
| ST                                    | Y+, Rr                   | Store Indirect and Post-Inc.                                                                                                   | $(Y) \leftarrow Rr, Y \leftarrow Y + 1$                                                                                             | None                 | 2                |
| ST                                    | - Y, Rr                  | Store Indirect and Pre-Dec.                                                                                                    | $Y \leftarrow Y - 1$ , $(Y) \leftarrow Rr$                                                                                          | None                 | 2                |
| STD                                   | Y+q,Rr                   | Store Indirect with Displacement                                                                                               | $(Y + q) \leftarrow Rr$                                                                                                             | None                 | 2                |
| ST                                    | Z, Rr                    | Store Indirect                                                                                                                 | (Z) ← Rr                                                                                                                            | None                 | 2                |
| ST                                    | Z+, Rr                   | Store Indirect and Post-Inc.                                                                                                   | $(Z) \leftarrow Rr, Z \leftarrow Z + 1$                                                                                             | None                 | 2                |
|                                       | 1                        | Store Indirect and Pre-Dec.                                                                                                    | $Z \leftarrow Z - 1$ , $(Z) \leftarrow Rr$                                                                                          | None                 | 2                |
| ST                                    | -Z, Rr                   | Green manager and 110 Bee.                                                                                                     |                                                                                                                                     |                      | _                |
|                                       | -Z, Rr<br>Z+q,Rr         | Store Indirect with Displacement                                                                                               | $(Z + q) \leftarrow Rr$                                                                                                             | None                 | 2                |
| ST                                    |                          |                                                                                                                                | $ (Z + q) \leftarrow Rr $ $ (k) \leftarrow Rr $                                                                                     | None<br>None         | 2                |
| ST<br>STD                             | Z+q,Rr                   | Store Indirect with Displacement                                                                                               |                                                                                                                                     |                      |                  |
| ST<br>STD<br>STS                      | Z+q,Rr                   | Store Indirect with Displacement Store Direct to SRAM                                                                          | (k) ← Rr                                                                                                                            | None                 | 2                |
| ST<br>STD<br>STS<br>LPM               | Z+q,Rr<br>k, Rr          | Store Indirect with Displacement Store Direct to SRAM Load Program Memory                                                      | $(k) \leftarrow Rr$ $R0 \leftarrow (Z)$                                                                                             | None<br>None         | 2 3              |
| ST<br>STD<br>STS<br>LPM<br>LPM        | Z+q,Rr<br>k, Rr<br>Rd, Z | Store Indirect with Displacement Store Direct to SRAM Load Program Memory Load Program Memory                                  | $ (k) \leftarrow Rr $ $ R0 \leftarrow (Z) $ $ Rd \leftarrow (Z) $                                                                   | None<br>None<br>None | 2<br>3<br>3      |
| ST<br>STD<br>STS<br>LPM<br>LPM<br>LPM | Z+q,Rr<br>k, Rr<br>Rd, Z | Store Indirect with Displacement Store Direct to SRAM Load Program Memory Load Program Memory Load Program Memory and Post-Inc | $ \begin{array}{c} (k) \leftarrow Rr \\ R0 \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z+1 \end{array} $ | None<br>None<br>None | 2<br>3<br>3<br>3 |





| Mnemonics       | Operands  | Description             | Operation                                | Flags | #Clocks |
|-----------------|-----------|-------------------------|------------------------------------------|-------|---------|
| PUSH            | Rr        | Push Register on Stack  | STACK ← Rr                               | None  | 2       |
| POP             | Rd        | Pop Register from Stack | Rd ← STACK                               | None  | 2       |
| MCU CONTROL INS | TRUCTIONS |                         |                                          |       |         |
| NOP             |           | No Operation            |                                          | None  | 1       |
| SLEEP           |           | Sleep                   | (see specific descr. for Sleep function) | None  | 1       |
| WDR             |           | Watchdog Reset          | (see specific descr. for WDR/timer)      | None  | 1       |
| BREAK           |           | Break                   | For On-chip Debug Only                   | None  | N/A     |

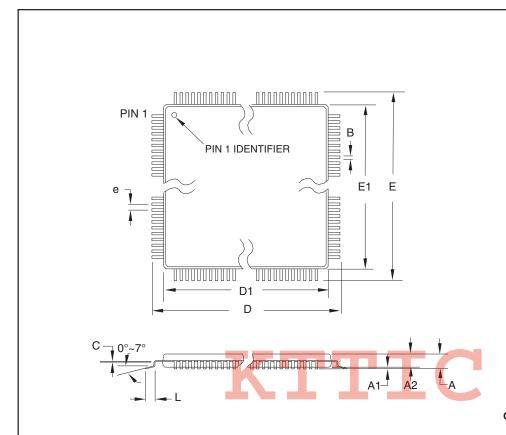
# KTTIC



# **Ordering Information**

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>       | Package <sup>(1)</sup> | Operation Range               |
|----------------------------|--------------|------------------------------------|------------------------|-------------------------------|
| 8                          | 1.8 - 5.5V   | ATmega165PV-8AU<br>ATmega165PV-8MU | 64A<br>64M1            | Industrial<br>(-40°C to 85°C) |
| 16                         | 2.7 - 5.5V   | ATmega165P-16AU<br>ATmega165P-16MU | 64A<br>64M1            | Industrial<br>(-40°C to 85°C) |

Notes:


- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. For Speed vs.  $V_{CC}$ , see Figure 26-1 on page 303 and Figure 26-2 on page 304.



|      | Package Type                                                                                          |
|------|-------------------------------------------------------------------------------------------------------|
| 64A  | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                     |
| 64M1 | 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |

# **Packaging Information**

### 64A 7.1



# **COMMON DIMENSIONS**

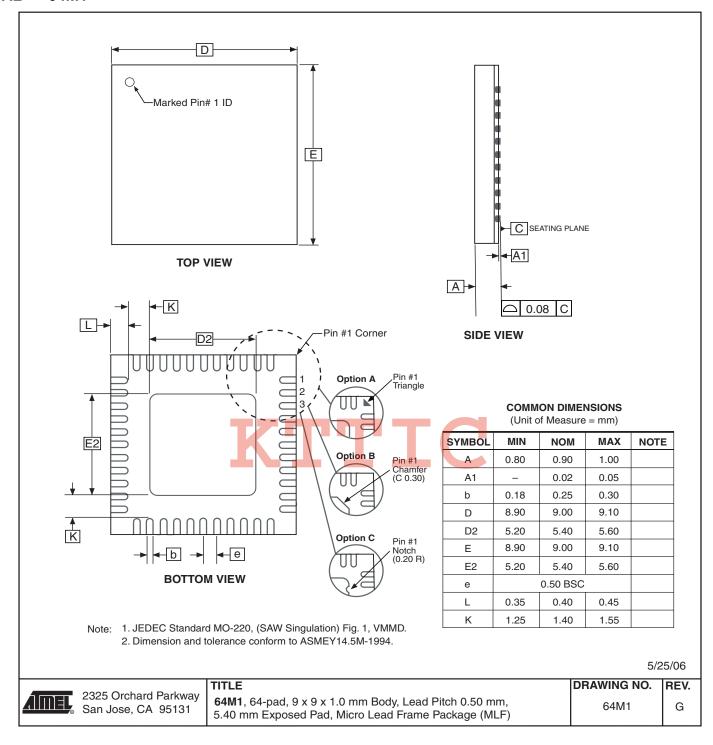
(Unit of Measure = mm)

| SYMBOL | MIN   | NOM      | MAX   | NOTE   |
|--------|-------|----------|-------|--------|
| Α      | _     | _        | 1.20  |        |
| A1     | 0.05  | _        | 0.15  |        |
| A2     | 0.95  | 1.00     | 1.05  |        |
| D      | 15.75 | 16.00    | 16.25 |        |
| D1     | 13.90 | 14.00    | 14.10 | Note 2 |
| Е      | 15.75 | 16.00    | 16.25 |        |
| E1     | 13.90 | 14.00    | 14.10 | Note 2 |
| В      | 0.30  | _        | 0.45  |        |
| С      | 0.09  | _        | 0.20  |        |
| L      | 0.45  | _        | 0.75  |        |
| е      |       | 0.80 TYP |       |        |

# Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation AEB.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

| 0/5/2001 |  |
|----------|--|
|----------|--|


2325 Orchard Parkway San Jose, CA 95131

TITLE 64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO. REV. 64A В



#### 7.2 64M1





- 8. Errata
- 8.1 ATmega165P Rev. G

No known errata.

8.2 ATmega165P Rev. A to F

Not sampled.

# KTTIC

## **Datasheet Revision History** 9.

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

## Rev. I 08/07 9.1

- 1. Updated "Features" on page 1.
- 2. Updated bit description in "SREG - AVR Status Register" on page 11.
- 3. Updated "Starting a Conversion" on page 210.
- 4. Updated Table 21-6 on page 225.
- 5. Updated "System and Reset Characteristics" on page 306.
- 6. Updated representation of bit fields, i.e. from WGM13:0 to WGM1[3:0].

#### 9.2 Rev. H 11/06

- 1. Updated "Low-frequency Crystal Oscillator" on page 31.
- 2. Updated Table 26-6 on page 307.
- 3. Updated note in Table 26-6 on page 307.

#### 9.3 Rev. G 09/06



- Updated "Calibrated Internal RC Oscillator" on page 29. 1.
- 2. Updated "System Control and Reset" on page 44.
- 3. Updated Table 7-9 on page 32 and Table 7-10 on page 32.
- 4. Added note for Table 25-15 on page 286
- Updated "Parallel Programming Characteristics" on page 282. 5.
- 6. Updated "Electrical Characteristics" on page 301.

#### Rev. F 08/06 9.4

- 1. Updated Table 12-12 on page 78.
- 2. Updated "DC Characteristics" on page 301.

## Rev. E 08/06 9.5

- Updated "Low-frequency Crystal Oscillator" on page 31. 1.
- 2. Updated "Device Identification Register" on page 234.
- 3. Updated "Signature Bytes" on page 273.
- 4. Added Table 25-6 on page 273.



## 9.6 Rev. D 07/06

- 1. Updated "Register Description" on page 81.
- 2. Updated "Fast PWM Mode" on page 90.
- 3. Updated "Fast PWM Mode" on page 113.
- 4. Updated Features in "USI Universal Serial Interface" on page 192.
- 5. Added "Clock speed considerations." on page 199.
- 6. Updated Table 13-2 on page 95, Table 13-4 on page 96, Table 14-2 on page 121, Table 14-3 on page 122, Table 14-4 on page 123, Table 16-2 on page 146 and Table 16-4 on page 147.
- 7. Updated "UCSRnC USART Control and Status Register n C" on page 185.
- 8. Updated "Register Summary" on page 347.

## 9.7 Rev. C 06/06

- 1. Updated typos.
- 2. Updated "Calibrated Internal RC Oscillator" on page 29.
- 3. Updated "OSCCAL Oscillator Calibration Register" on page 35.
- 4. Added Table 26-2 on page 305.

## 9.8 Rev. B 04/06



- 1. Updated "Calibrated Internal RC Oscillator" on page 29.
- Updated "Sleep Modes" on page 37.

## 9.9 Rev. A 03/06

1. Initial revision.

