1. Features

- Low-voltage and Standard-voltage Operation
 - 2.7 (V_{CC} = 2.7V to 5.5V)
 - 1.8 (V_{cc} = 1.8V to 5.5V)
- User-selectable Internal Organization
 - 2K: 256 x 8 or 128 x 16
 - 4K: 512 x 8 or 256 x 16
- Three-wire Serial Interface
- Sequential Read Operation
- 2 MHz Clock Rate (5V)
- Self-timed Write Cycle (10 ms Max)
- High Reliability
 - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
- Automotive Devices Available
- 8-lead JEDEC PDIP, 8-lead JEDEC SOIC, 8-lead EIAJ SOIC, 8-lead Ultra Thin mini-MAP (MLP 2x3), 8-lead Ultra Lead Frame Land Grid Array (ULA), 8-lead TSSOP and 8-ball dBGA2 Packages

2. Description

The AT93C56A/66A provides 2048/4096 bits of serial electrically erasable programmable read-only memory (EEPROM) organized as 128/256 words of 16 bits each (when the ORG pin is connected to VCC) and 256/512 words of 8 bits each (when the ORG pin is tied to ground). The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operations are essential. The AT93C56A/66A is available in space-saving 8-lead PDIP, 8-lead JEDEC SOIC, 8lead EIAJ SOIC, 8-lead Ultra Thin mini-MAP (MLP 2x3), 8-lead Ultra Lead Frame Land Grid Array (ULA), 8-lead TSSOP, and 8-ball dBGA2 packages.

The AT93C56A/66A is enabled through the Chip Select pin (CS) and accessed via a three-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a read instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The write cycle is completely self-timed and no separate erase cycle is required before write. The write cycle is only enabled when the part is in the Erase/Write Enable State. When CS is brought "high" following the initiation of a write cycle, the DO pin outputs the Ready/Busy status of the part.

The AT93C56A/66A is available in 2.7V to 5.5V and 1.8V to 5.5V versions.

Three-wire Serial EEPROM

2K (256 x 8 or 128 x 16)

4K (512 x 8 or 256 x 16)

AT93C56A AT93C66A

3378L-SEEPR-11/07

Table 2-1.Pin Configurations

Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
VCC	Power Supply
ORG	Internal Organization
NC	No Connect

*NOTICE:

3. Absolute Maximum Ratings*

Operating Temperature–55°C to +125°C	
Storage Temperature65°C to +150°C	
Voltage on Any Pin with Respect to Ground1.0V to +7.0V	
Maximum Operating Voltage 6.25V	
DC Output Current 5.0 mA	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

² AT93C56A/66A

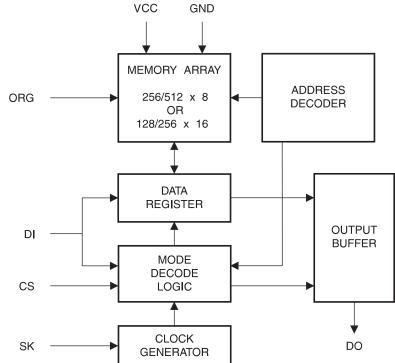


Figure 3-1. Block Diagram

Note: When the ORG pin is connected to VCC, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal 1 Meg ohm pullup, then the x 16 organization is selected.

Pin Capacitance⁽¹⁾ Table 3-1.

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = +5.0V$ (unless otherwise noted)

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	V _{IN} = 0V

Note: I his parameter is characterized and is not 100% tested.

Table 3-2. **DC** Characteristics

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}C$ to +85°C, $V_{CC} = +1.8V$ to +5.5V, V_{CC} = +1.8V to +5.5V (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			1.8		5.5	V
V _{CC2}	Supply Voltage			2.7		5.5	V
V _{CC3}	Supply Voltage			4.5		5.5	V
	Quantu Quanant		READ at 1.0 MHz		0.5	2.0	mA
I _{CC}	Supply Current	$V_{\rm CC} = 5.0 V$	WRITE at 1.0 MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 1.8V	CS = 0V		0.4	1.0	μA
I _{SB2}	Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μA
I _{SB3}	Standby Current	V _{CC} = 5.0V	CS = 0V		10.0	15.0	μA
I _{IL}	Input Leakage	$V_{IN} = 0V$ to V_{CC}			0.1	3.0	μA
I _{OL}	Output Leakage	$V_{IN} = 0V \text{ to } V_{CC}$			0.1	3.0	μA
V _{IL1} ⁽¹⁾ V _{IH1} ⁽¹⁾	Input Low Voltage Input High Voltage	2.7V ≤ V _{CC} ≤ 5.5V		-0.6 2.0		0.8 V _{CC} + 1	V
V _{IL2} ⁽¹⁾ V _{IH2} ⁽¹⁾	Input Low Voltage Input High Voltage	$1.8V \leq V_{CC} \leq 2.7V$		-0.6 V _{CC} x 0.7		V _{CC} x 0.3 V _{CC} + 1	V
V _{OL1}	Output Low Voltage		I _{OL} = 2.1 mA			0.4	V
V _{OH1}	Output High Voltage	$2.7V \le V_{CC} \le 5.5V$	I _{OH} = -0.4 mA	2.4			V
V _{OL2}	Output Low Voltage		I _{OL} = 0.15 mA			0.2	V
V _{OH2}	Output High Voltage	$1.8V \le V_{CC} \le 2.7V$	I _{OH} = –100 μA	$V_{CC} - 0.2$			V

1. v_{IL} min and v_{IH} max are reference only and are not tested. NOLE.

Table 3-3.AC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}C$ to + 85°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100 pF (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Мах	Units
f _{SK}	SK Clock Frequency	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	/	0 0 0		2 1 0.25	MHz
t _{sкн}	SK High Time	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$		250 1000			ns
t _{SKL}	SK Low Time	$\begin{array}{c} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$		250 1000			ns
t _{cs}	Minimum CS Low Time	$\begin{array}{c} 2.7V \leq V_{CC} \leq 5.5V\\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$		250 1000			ns
t _{css}	CS Setup Time	Relative to SK	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$	50 200			ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$	100 400			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
t _{DIH}	DI Hold Time	Relative to SK	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$	100 400			ns
t _{PD1}	Output Delay to "1"	AC Test	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$			250 1000	ns
t _{PD0}	Output Delay to "0"	AC Test	$\begin{array}{l} 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$			250 1000	ns
t _{sv}	CS to Status Valid	AC Test	2.7V ≤ V _{CC} ≤ 5.5V 1.8V ≤ V _{CC} ≤ 5.5V	C		250 1000	ns
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$2.7V \leq V_{CC} \leq 5.5V$ $1.8V \leq V_{CC} \leq 5.5V$			150 400	ns
t _{WP}	Write Cycle Time		$1.8V \leq V_{CC} \leq 5.5V$	0.1	3	10	ms
Endurance ⁽¹⁾	5.0V, 25°C			1M			Write Cycle

Note: 1. This parameter is characterized and is not 100% tested.

		Ор	Addr	ess	Data		
Instruction	SB	Code	x 8	x 16	x 8	x 16	Comments
READ	1	10	$A_8 - A_0$	$A_7 - A_0$			Reads data stored in memory, at specified address.
EWEN	1	00	11XXXXXXX	11XXXXXX			Write enable must precede all programming modes.
ERASE	1	11	$A_8 - A_0$	$A_7 - A_0$			Erases memory location $A_n - A_0$.
WRITE	1	01	$A_8 - A_0$	$A_7 - A_0$	$D_{7} - D_{0}$	D ₁₅ – D ₀	Writes memory location $A_n - A_0$.
ERAL	1	00	10XXXXXXX	10XXXXXX			Erases all memory locations. Valid only at V_{CC} = 4.5V to 5.5V.
WRAL	1	00	01XXXXXXX	01XXXXXX	D ₇ – D ₀	D ₁₅ – D ₀	Writes all memory locations. Valid only at V_{CC} = 5.0V ±10% and Disable Register cleared.
EWDS	1	00	00XXXXXXX	00XXXXXX			Disables all programming instructions.

Table 3-4. Instruction Set for the AT93C56A and AT93C66A

Note: The X's in the address field represent don't care values and must be clocked.

4. Functional Description

The AT93C56A/66A is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. **A valid instruction starts with a rising edge of CS** and consists of a Start Bit (logic "1") followed by the appropriate Op Code and the desired memory address location.

READ (READ): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string. The AT93C56A/66A supports sequential read operations. The device will automatically increment the internal address pointer and clock out the next memory location as long as Chip Select (CS) is held high. In this case, the dummy bit (logic "0") will not be clocked out between memory locations, thus allowing for a continuous stream of data to be read.

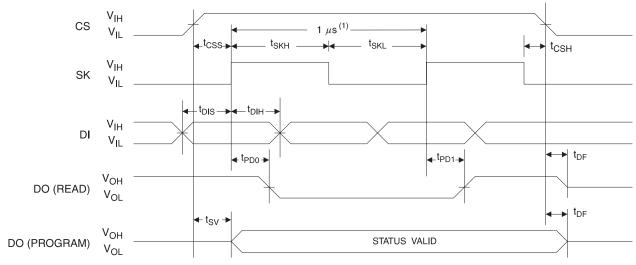
ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.

ERASE (ERASE): The Erase instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "1" at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction.

WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle t_{WP} starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A READY/BUSY status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle t_{WP} .

ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The ERAL instruction is valid only at V_{CC} = 5.0V ± 10%.

WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The WRAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.


ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the READ instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

5. Timing Diagrams

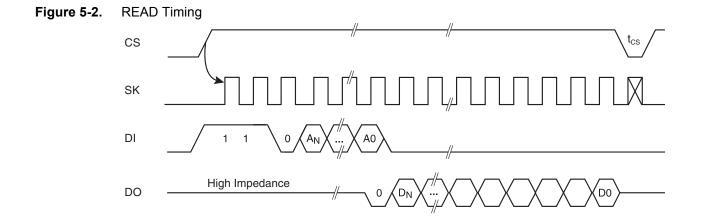
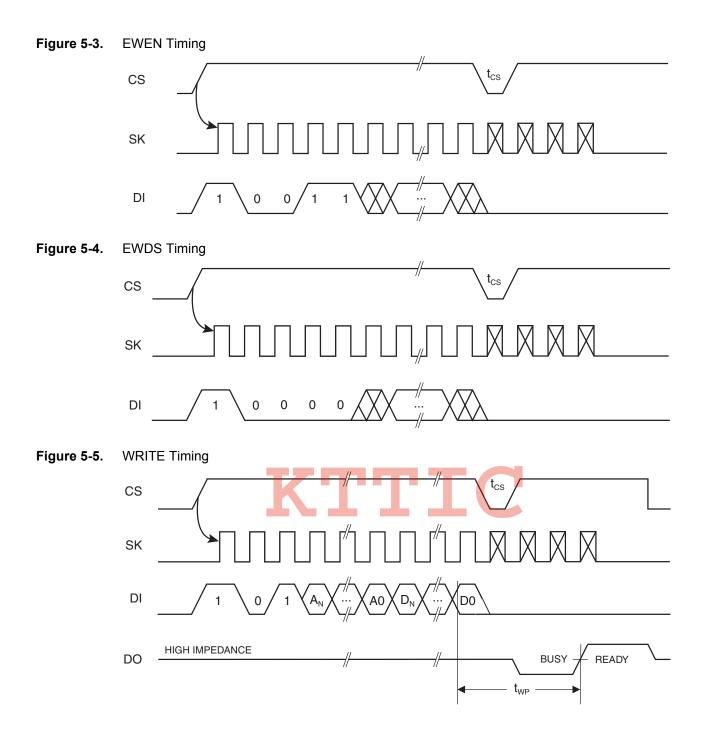
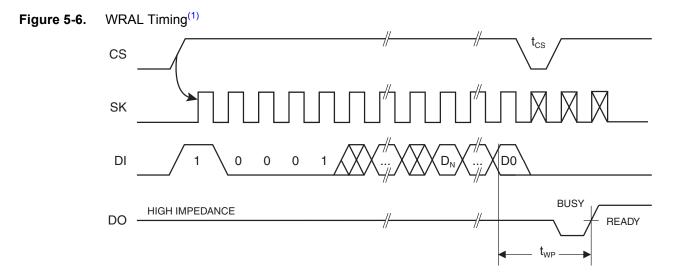

Note: 1. This is the minimum SK period.

 Table 5-1.
 Organization Key for Timing Diagrams

	AT93C56A (2K)		AT93C6	6A (4K)
I/O	x 8	x 16	x 8	x 16
A _N	A ₈ ⁽¹⁾	A ₇ ⁽²⁾	A ₈	A ₇
D _N	D ₇	D ₁₅	D ₇	D ₁₅

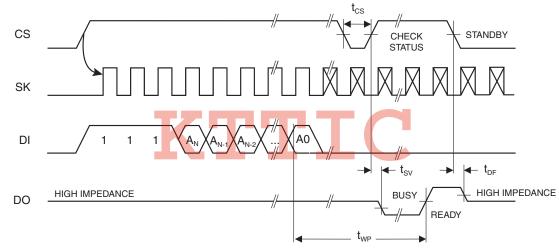

Notes: 1. A₈ is a DON'T CARE value, but the extra clock is required.

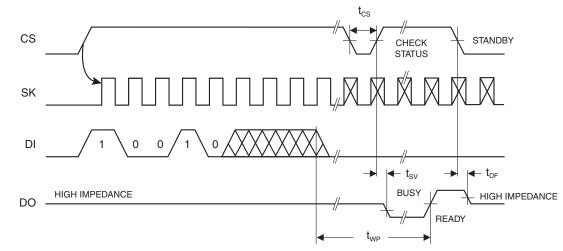
2. A₇ is a DON'T CARE value, but the extra clock is required.



8 AT93C56A/66A

AT93C56A/66A




Note: 1. Valid only at V_{CC} = 4.5V to 5.5V.

AT93C56A/66A

Figure 5-8. ERAL Timing⁽¹⁾

Note: 1. Valid only at V_{CC} = 4.5V to 5.5V.

KTTIC

http://www.kttic.com

6. AT93C56A Ordering Information⁽¹⁾

Ordering Code	Package	Operation Range
AT93C56A-10PU-2.7 ⁽²⁾	8P3	
AT93C56A-10PU-1.8 ⁽²⁾	8P3	
AT93C56A-10SU-2.7 ⁽²⁾	8S1	
AT93C56A-10SU-1.8 ⁽²⁾	8S1	
AT93C56AW-10SU-2.7 ⁽²⁾	8S2	
AT93C56AW-10SU-1.8 ⁽²⁾	8S2	Lead-free/Halogen-free/ Industrial Temperature
AT93C56A-10TU-2.7 ⁽²⁾	8A2	$(-40^{\circ}\text{C to } 85^{\circ}\text{C})$
AT93C56A-10TU-1.8 ⁽²⁾	8A2	(-40 C to 85 C)
AT93C56AU3-10UU-1.8 ⁽²⁾	8U3-1	
AT93C56AD3-DH-T	8D3	
AT93C56AY1-10YU-1.8 ⁽²⁾ (Not recommended for new design)	8Y1	
AT93C56AY6-10YH-1.8 ⁽³⁾	8Y6	
AT93C56A-W1.8-11 ⁽⁴⁾	Die Sales	Industrial Temperature (–40°C to 85°C)

Notes: 1. For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the AC and DC characteristics table.

- 2. "U" designates Green package + RoHS compliant.
- 3. "H" designates Green package + RoHS compliant, with NiPdAu Lead Finish.
- 4. Available in waffle pack and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial Marketing.

	Package Type
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
8U3-1	8-ball, die Ball Grid Array Package (dBGA2)
8Y1	8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)
8Y6	8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini-MAP, Dual No Lead package (DFN), (MLP 2x3 mm)
8D3	8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Lead Frame Land Grid Array (ULA)
	Options
-2.7	Low-voltage (2.7V to 5.5V)
-1.8	Low-voltage (1.8V to 5.5V)

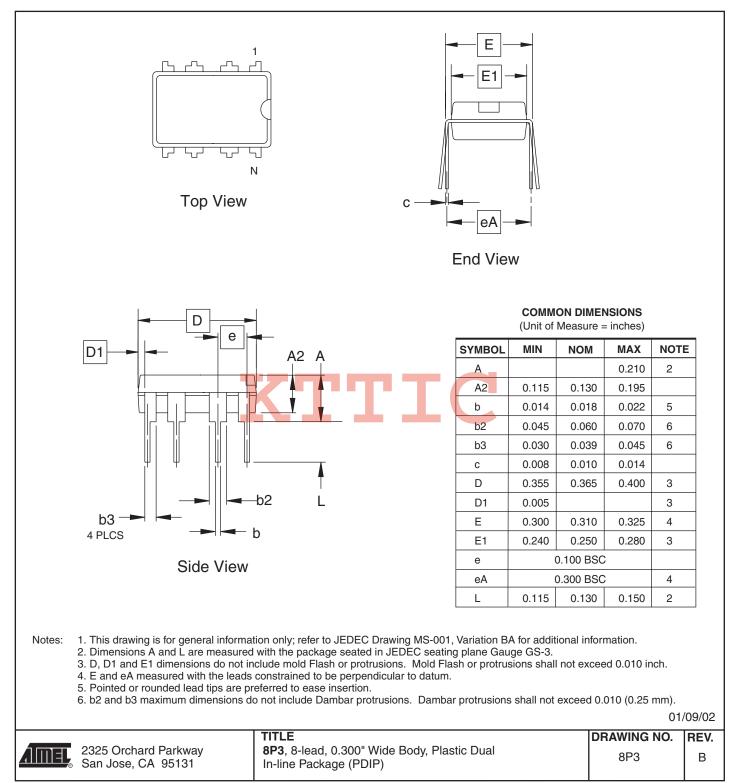
7. AT93C66A Ordering Information⁽¹⁾

Ordering Code	Package	Operation Range
AT93C66A-10PU-2.7 ⁽²⁾	8P3	
AT93C66A-10PU-1.8 ⁽²⁾	8P3	
AT93C66A-10SU-2.7 ⁽²⁾	8S1	
AT93C66A-10SU-1.8 ⁽²⁾	8S1	
AT93C66AW-10SU-2.7 ⁽²⁾	8S2	
AT93C66AW-10SU-1.8 ⁽²⁾	8S2	Lead-free/Halogen-free/ Industrial Temperature
AT93C66A-10TU-2.7 ⁽²⁾	8A2	$(-40^{\circ}\text{C to } 85^{\circ}\text{C})$
AT93C66A-10TU-1.8 ⁽²⁾	8A2	(-40 C 10 85 C)
AT93C66AU3-10UU-1.8 ⁽²⁾	8U3-1	
AT93C66AD3-DH-T	8D3	
AT93C66AY1-10YU-1.8 ⁽²⁾ (Not recommended for new design)	8Y1	
AT93C66AY6-10YH-1.8 ⁽³⁾	8Y6	
AT93C66A-W1.8-11 ⁽⁴⁾	Die Sale	Industrial Temperature
	2.0 0010	(–40°C to 85°C)

Notes: 1. For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the AC and DC characteristics table.

2. "U" designates Green package + RoHS compliant.

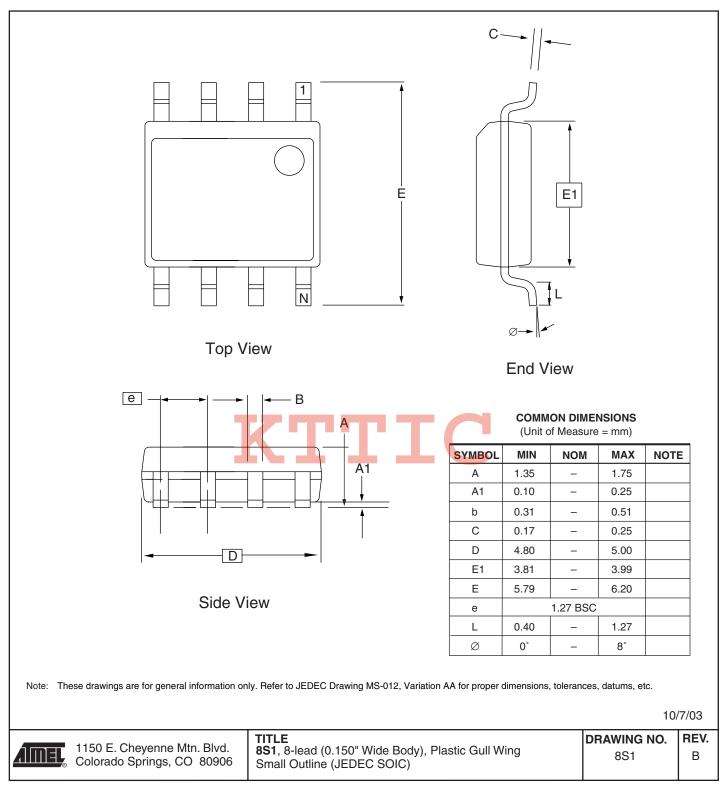
3. "H" designates Green package + RoHS compliant, with NiPdAu Lead Finish.


4. Available in waffle pack and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial EEPROM Marketing.

	Package Type
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
8U3-1	8-ball, die Ball Grid Array Package (dBGA2)
8Y1	8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)
8Y6	8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini-MAP, Dual No Lead package (DFN), (MLP 2x3 mm)
8D3	8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Lead Frame Land Grid Array (ULA)
	Options
-2.7	Low-voltage (2.7V to 5.5V)
-1.8	Low-voltage (1.8V to 5.5V)

8. Packaging Information

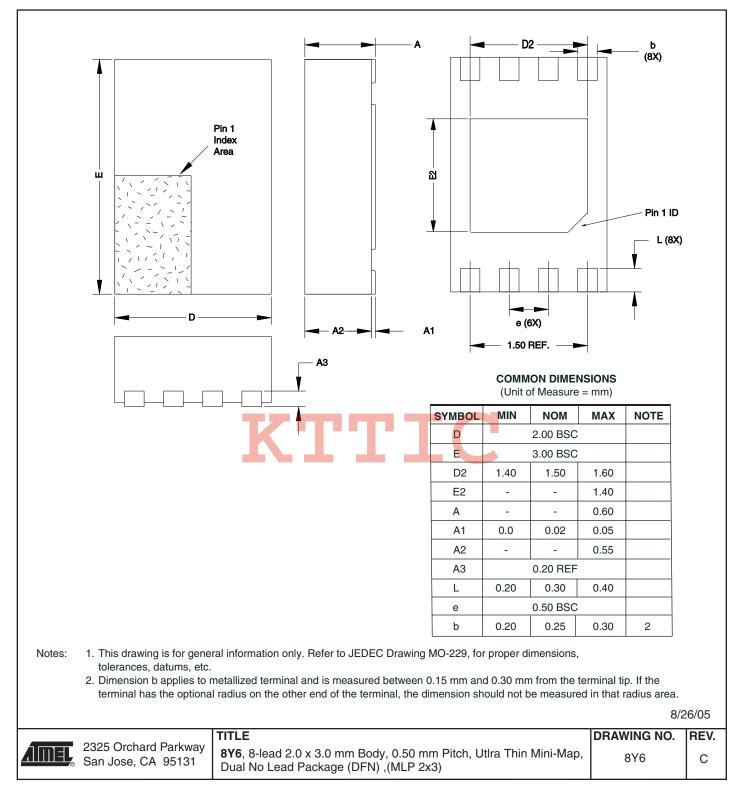
8.1 8P3 – PDIP



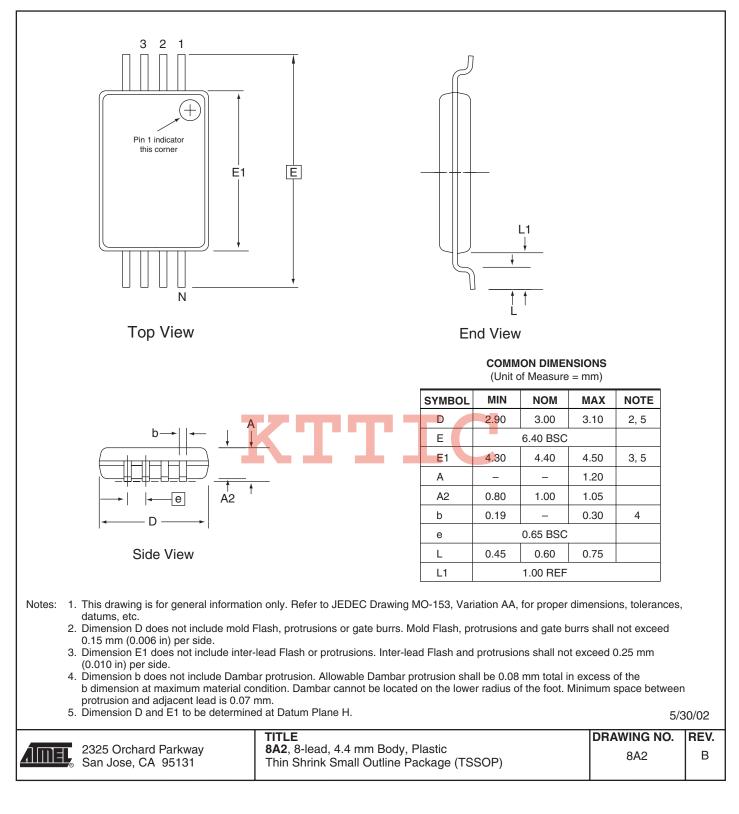
14 AT93C56A/66A

http://www.katerseergyon

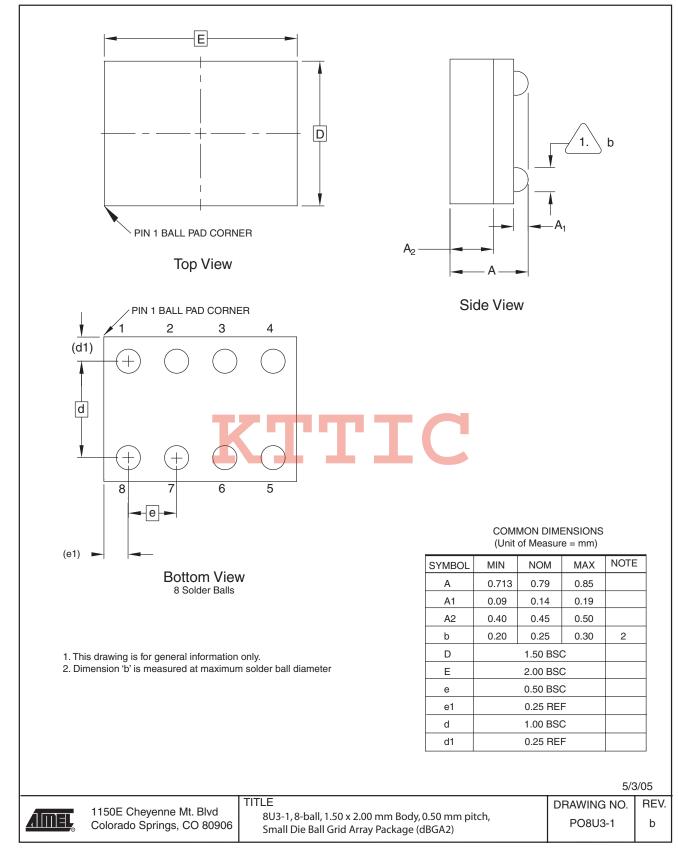
AT93C56A/66A


8.2 8S1 – JEDEC SOIC

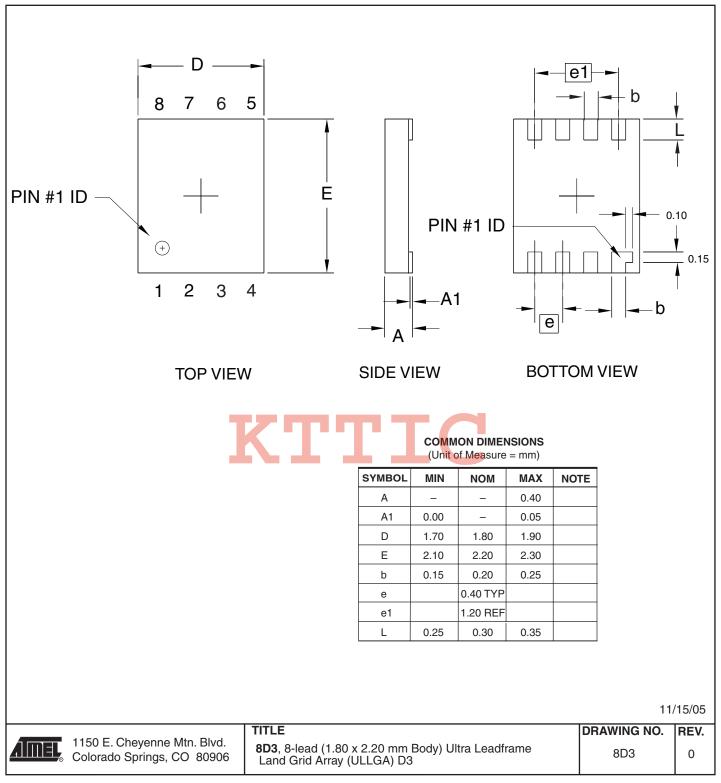
8.3 8S2 – EIAJ SOIC



8.3 8Y6 - Mini-MAP (MLP 2x3)


AT93C56A/66A

8.4 8A2 – TSSOP


8.5 8U3-1 – dBGA2

18 AT93C56A/66A

AT93C56A/66A

8.6 8D3 - ULA

9. Revision History

Revision No.	Date	Comments
3378L	11/2007	Updated to new template Added ULA package offering
3378K	12/2006	Removed DC/Don't Connect and replaced with NC/No Conenct Adjusted size of Block diagram on pg. 2 Made all diagrams on pages 6-9 consistently the same size Corrected 8U3-1