Features

- Fast Read Access Time 55 ns
- Dual Voltage Range Operation
 - Low-voltage Power Supply Range, 3.0V to 3.6V or Standard 5V ±10% Supply Range
- Pin Compatible with JEDEC Standard AT27C256R
- Low-power CMOS Operation
 - $-20~\mu$ A Max (Less than 1 μ A Typical) Standby for $V_{CC} = 3.6V$
 - 29 mW Max Active at 5 MHz for V_{CC} = 3.6V
- JEDEC Standard Packages
 - 32-lead PLCC
 - 28-lead SOIC
 - 28-lead TSOP
- High-reliability CMOS Technology
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Rapid Programming Algorithm 100 µs/Byte (Typical)
- CMOS and TTL Compatible Inputs and Outputs
 - JEDEC Standard for LVTTL
- Integrated Product Identification Code
- Industrial Temperature Range
- Green (Pb/Halide-free) Packaging Option

1. Description

The AT27LV256A is a high-performance, low-power, low-voltage 262,144-bit one-time programmable read-only memory (OTP EPROM) organized as 32K by 8 bits. It requires only one supply in the range of 3.0V to 3.6V in normal read mode operation, making it ideal for fast, portable systems using battery power.

Atmel's innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3.3V supply. At V_{CC} = 3.0V, any byte can be accessed in less than 55 ns. With a typical power dissipation of only 18 mW at 5 MHz and V_{CC} = 3.3V, the AT27LV256A consumes less than one fifth the power of a standard 5V EPROM. Standby mode supply current is typically less than 1 μ A at 3.3V.

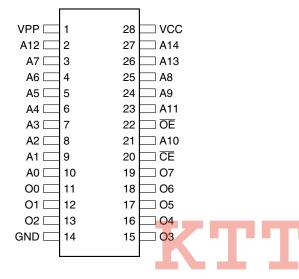
The AT27LV256A is available in industry-standard JEDEC-approved one-time programmable (OTP) plastic PLCC, SOIC and TSOP packages. All devices feature two-line control (CE, OE) to give designers the flexibility to prevent bus contention.

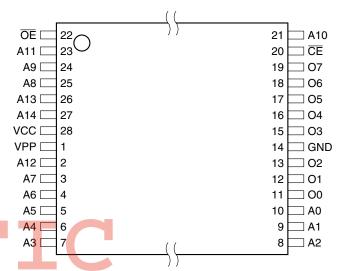
The AT27LV256A operating with V_{CC} at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at V_{CC} = 5.0V. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts.

Atmel's AT27LV256A has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry-standard programming equipment to select the proper programming algorithms and voltages. The AT27LV256A programs exactly the same way as a standard 5V AT27C256R and uses the same programming equipment.

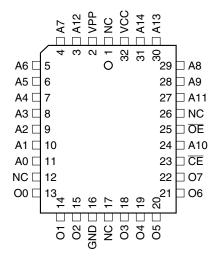
256K (32K x 8) Low-voltage OTP EPROM

AT27LV256A


0547G-EPROM-12/07

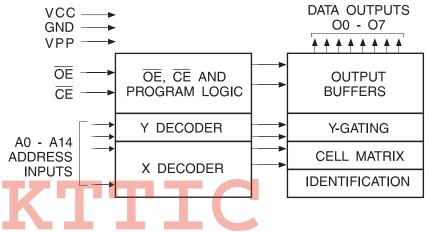

Pin Configurations 2.

Pin Name	Function
A0 - A14	Addresses
O0 - O7	Outputs
CE	Chip Enable
ŌĒ	Output Enable
NC	No Connect


28-lead SOIC Top View 2.1

2.3 28-lead TSOP (Type 1) Top View

32-lead PLCC Top View 2.2


Note: 1. PLCC Package Pins 1 and 17 are Don't Connect.

3. System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

4. Block Diagram

5. Absolute Maximum Ratings*

Temperature Under Bias	-40°C to +85°C
Storage Temperature	65°C to +125°C
Voltage on Any Pin with Respect to Ground	2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground	2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground	2.0V to +14.0V ⁽¹⁾

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Note:

 Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0V for pulses of less than 20 ns.

http://www.kttic.cg

Operating Modes

Mode/Pin	CE	ŌĒ	Ai	V _{PP}	V _{cc}	Outputs
Read ⁽²⁾	V _{IL}	V _{IL}	Ai	V _{CC}	V _{CC}	D _{OUT}
Output Disable ⁽²⁾	V _{IL}	V _{IH}	X ⁽¹⁾	V _{CC}	V _{CC}	High Z
Standby ⁽²⁾	V _{IH}	X ⁽¹⁾	X ⁽¹⁾	V _{CC}	V _{CC}	High Z
Rapid Program ⁽³⁾	V _{IL}	V _{IH}	Ai	V _{PP}	V _{CC}	D _{IN}
PGM Verify ⁽³⁾	X ⁽¹⁾	V_{IL}	Ai	V_{PP}	V _{CC}	D _{OUT}
Optional PGM Verify ⁽³⁾	V _{IL}	V_{IL}	Ai	V _{CC}	V _{CC}	D _{OUT}
PGM Inhibit ⁽³⁾	V _{IH}	V_{IH}	X ⁽¹⁾	V_{PP}	V _{CC}	High Z
Product Identification ⁽³⁾⁽⁵⁾	V _{IL}	V _{IL}	$A9 = V_H^{(4)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A14 = V_{IL}$	V _{cc}	V _{cc}	Identification Code

- Notes: 1. X can be V_{IL} or V_{IH}.
 - 2. Read, output disable, and standby modes require, 3.0V \leq V_{CC} \leq 3.6V, or 4.5V \leq V_{CC} \leq 5.5V.
 - 3. Refer to Programming Characteristics. Programming modes require V_{CC} = 6.5V.
 - 4. $V_H = 12.0 \pm 0.5V$.
 - 5. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

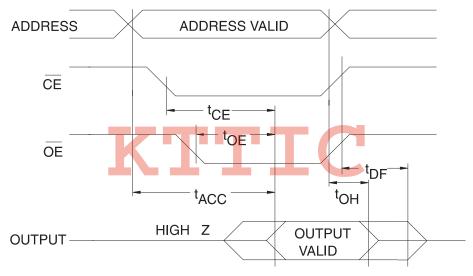
DC and AC Operating Conditions for Read Operation 7.

TZ ITT	AT27L	.V256A
K	-55	-90
Industrial Operating Temperature (Case)	-40°C - 85°C	-40°C - 85°C
V. Douger Cupply	3.0V to 3.6V	3.0V to 3.6V
V _{CC} Power Supply	5V ±10%	5V ±10%

DC and Operating Characteristics for Read Operation 8.

Symbol	Parameter	Condition	Min	Max	Units
V _{CC} = 3.0V	to 3.6V				
I _{LI}	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC}$		±1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μΑ
	V (1) Chandley Comment	I_{SB1} (CMOS), $\overline{CE} = V_{CC \pm} 0.3V$		20	μΑ
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V		100	μΑ
I _{CC}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$		8	mA
V _{IL}	Input Low Voltage		-0.6	0.8	V
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.0 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -2.0 mA	2.4		V
V _{CC} = 4.5V	to 5.5V				
I _{LI}	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC}$		±1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μΑ
	V (1) Ctandby Current	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		100	μΑ
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V		1	mA
I _{CC}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$		20	mA
V _{IL}	Input Low Voltage		-0.6	0.8	V
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V_{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V

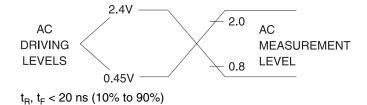
Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously with or after V_{PP}

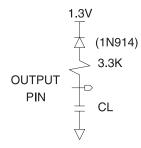

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP}

9. AC Characteristics for Read Operation

 $V_{CC} = 3.0V$ to 3.6V and 4.5V to 5.5V

			AT27LV		V256A		
			{	55	-90		
Symbol	Parameter	Condition	Max	Min	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$		55		90	ns
t _{CE} ⁽²⁾	CE to Output Delay	OE = V _{IL}		55		90	ns
t _{OE} ⁽²⁾⁽³⁾	OE to Output Delay	CE = V _{IL}		35		50	ns
t _{DF} ⁽⁴⁾⁽⁵⁾	OE or CE High to Output Float, Whichever Occurred First			30		40	ns
t _{OH}	Output Hold from Address, $\overline{\text{CE}}$ or $\overline{\text{OE}}$, Whichever Occurred First		0		0		ns


10. AC Waveforms for Read Operation⁽¹⁾

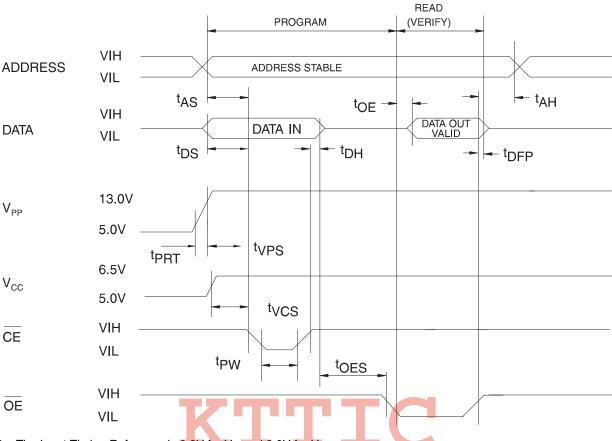

Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.

- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .
- 3. \overline{OE} may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

11. Input Test Waveforms and Measurement Levels

12. Output Test Load

Note: CL = 100 pF including jig capacitance.


13. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	8	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

14. Programming Waveforms⁽¹⁾

Notes:

- 1. The Input Timing Reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.
- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the AT27LV256A a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

15. DC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C, \ V_{CC} = 6.5 \pm 0.25V, \ V_{PP} = 13.0 \pm 0.25V$

			Limits		
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μΑ
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	V _{CC} Supply Current (Program and Verify)			25	mA
I _{PP2}	V _{PP} Current	CE = V _{IL}		25	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

16. AC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $V_{PP} = 13.0 \pm 0.25V$

			Lir		
Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Min Max	
t _{AS}	Address Setup Time		2		μs
t _{OES}	OE Setup Time	Input Rise and Fall Times:	2		μs
t _{DS}	Data Setup Time	(10% to 90%) 20 ns	2		μs
t _{AH}	Address Hold Time	Input Pulse Levels:	0		μs
t _{DH}	Data Hold Time	0.45V to 2.4V	2		μs
t _{DFP}	OE High to Output Float Delay ⁽²⁾		0	130	ns
t _{VPS}	V _{PP} Setup Time	Input Timing Reference Level:	2		μs
t _{VCS}	V _{CC} Setup Time	0.8V to 2.0V	2		μs
t _{PW}	CE Program Pulse Width ⁽³⁾	Output Timing Reference Level:	95	105	μs
t _{OE}	Data Valid from $\overline{OE}^{(2)}$	0.8V to 2.0V		150	ns
t _{PRT}	V _{PP} Pulse Rise Time During Programming		50		ns

- Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}
 - 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram.
 - 3. Program Pulse width tolerance is 100 μ sec \pm 5%.

17. Atmel's AT27LV256A Integrated Product Identification Code⁽¹⁾

Pins						Hex				
Codes	A0	07	O6	O5	04	О3	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	1	0	0	0	1	1	0	0	8C

Note: 1. The AT27LV256A has the same Product Identification Code as the AT27C256R. Both are programming compatible.

18. Rapid Programming Algorithm

A 100 μs \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μs \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

19. Ordering Information

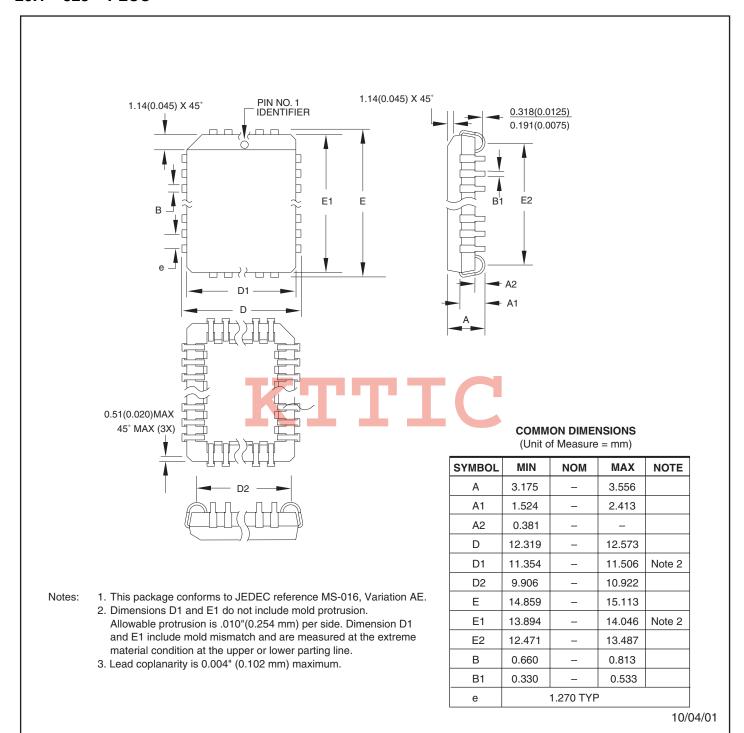
Standard Package 19.1

t _{ACC} I _{CC} (mA)		mA)			
(ns)			Ordering Code	Package	Operation Range
55	8	0.02	AT27LV256A-55JI	32J	Industrial
			AT27LV256A-55RI	28R ⁽¹⁾	(-40° C to 85° C)
			AT27LV256A-55TI	28T	
90	8	0.02	AT27LV256A-90JI	32J	Industrial
			AT27LV256A-90RI	28R ⁽¹⁾	(-40° C to 85° C)
			AT27LV256A-90TI	28T	

Note:

Not recommended for new designs. Use Green package option.

Green Package Option (Pb/Halide-free) 19.2


t _{ACC}	t _{ACC} I _{CC} (mA) (ns) Active Standby		I _{CC} (mA)				
(ns)			Ordering Code	Package	Operation Range		
55	8	0.02	AT27LV256A-55JU	32J	Industrial		
			AT27LV256A-55RU	28R ⁽¹⁾	(-40° C to 85° C)		
			AT27LV256A-55TU	28T			
90	8	0.02	AT27LV256A-90JU	32J	Industrial		
			AT27LV256A-90RU	28R ⁽¹⁾	(-40° C to 85° C)		
			AT27LV256A-90TU	28T			

1. The 28-pin SOIC package is not recommended for new designs. Note:

Package Type					
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)				
28R	28-lead, 0.330" Wide, Plastic Gull Wing Small Outline (SOIC)				
28T	28-lead, Thin Small Outline Package (TSOP)				

20. Packaging Information

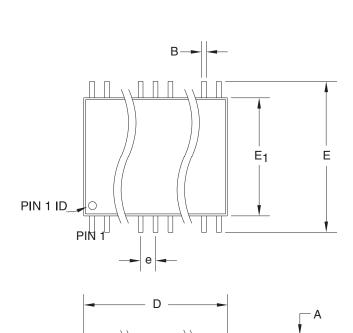
20.1 32J - PLCC

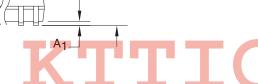
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC)

2325 Orchard Parkway

San Jose, CA 95131

TITLE


DRAWING NO.


32J

REV.

В

28R - SOIC 20.2

COMMON DIMENSIONS

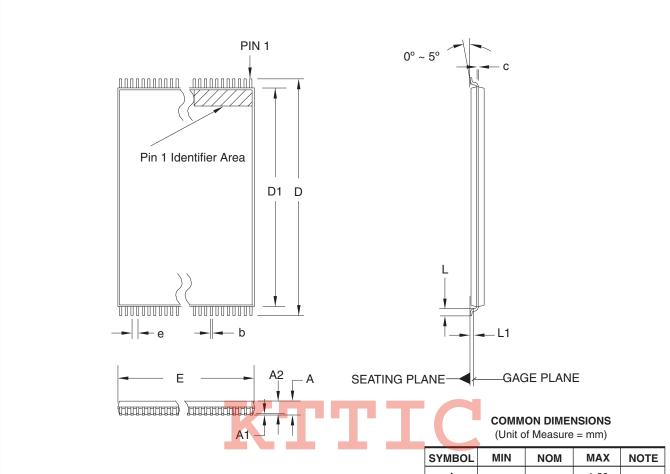
(Unit of Measure = mm)

Note: 1. Dimensions D and E1 do not include mold Flash or protrusion. Mold Flash or protrusion shall not exceed 0.25 mm (0.010").

SYMBOL	MIN	NOM	MAX	NOTE	
Α	2.39	_	2.79		
A1	0.050	_	0.356		
D	18.00	_	18.50	Note 1	
Е	11.70	_	12.50		
E1	8.59	_	8.79	Note 1	
В	0.356	_	0.508		
С	0.203	_	0.305		
L	0.94	_	1.27		
е	e 1.27 TYP				

5/18/2004

2325 Orchard Parkway San Jose, CA 95131


TITLE

28R, 28-lead, 0.330" Body Width, Plastic Gull Wing Small Outline (SOIC) DRAWING NO. REV. 28R

С

20.3 28T - TSOP

Notes:

- 1. This package conforms to JEDEC reference MO-183.
- 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
- 3. Lead coplanarity is 0.10 mm maximum.

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.90	1.00	1.05	
D	13.20	13.40	13.60	
D1	11.70	11.80	11.90	Note 2
E	7.90	8.00	8.10	Note 2
L	0.50	0.60	0.70	
L1	(
b	0.17	0.22	0.27	
С	0.10	_	0.21	
е	(

12/06/02

2325 Orchard Parkway San Jose, CA 95131 **TITLE 28T**, 28-lead (8 x 13.4 mm) Plastic Thin Small Outline Package, Type I (TSOP)

DRAWING NO. REV.
28T C