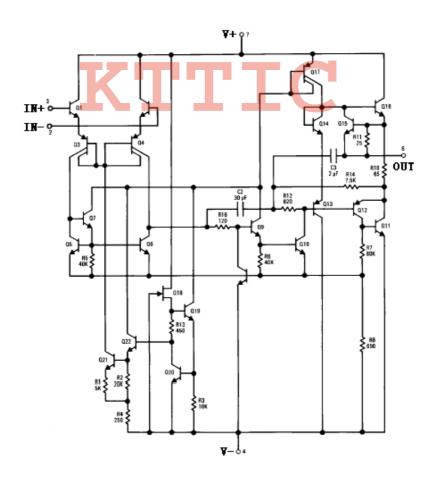
SG107/SG207 高性能运算放大器

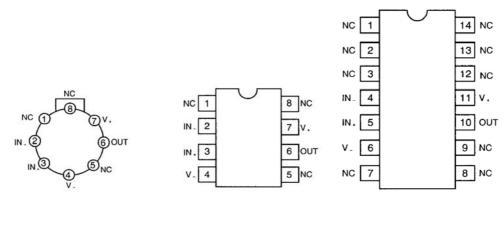
概述


SG107 系列是完善的、通用运算放大器, 其频率补偿电容做在集成块的内部, 由于采用了先进的工艺, 使得输入电流比 709 的通用标准低 10 倍左右, 此外, 它们还可以在电路中直接代替 709、101 及 741。

- 在全温范围内,失调电压最大为 3mV
- · 在全温范围内,输入电流最大为 100nA
- 在全温范围内,失调电流最大为 20nA
- 保证漂移性能

SG107 系列也具备 SG101A 的一些特点,这些特点使得它们的应用较为安全可靠。此外,在高阻抗电路中应用,这种器件能保证较高的精度和较低的噪声。较低的输入电流又使它尤其适于做长时间间隔的积分器和定时器、采样一保持电路以及低频波形发生器。而且,把配成晶体管对的缓冲电路置于常规集成运算放大器的输入端,可以以较低的成本获得更低的失调电压及漂移。

SG107 适用的温度范围为-55℃~+125℃, SG207 为-25℃~+85℃。


电原理图

SG107 系列的电原理图

KTTIC http://www.kttic.com

外引线排列: (顶视)

金属圆壳封装

双列直插式封装

绝对最大额定值

KTTIC http://www.kttic.com

电特性(注3)

参数	测试条件	SG107/SG207			24 /2.
		最 小	典 型	最 大	单位
输入失调电压	$T_A = 25^{\circ}C$ $R_S \leq 50k \Omega$		0.7	2.0	mV
输入失调电流	$T_A = 25$ °C		1.5	10	nA
输入偏置电流	$T_A = 25$ °C		30	75	nA
输入电阻	$T_A = 25$ °C	1.5	4.0		$\mathbf{M} \Omega$
电源电流	$T_A = 25$ °C $V_S = \pm 20V$		1.8	3.0	mA
大信号电压增益	$\begin{aligned} T_A &= 25 ^\circ\!\! \text{C} , & V_S &= \pm 15 V \\ V_{OUT} &= \pm 10 V & R_L \geqslant 2 k \Omega \end{aligned}$	50	160		V/mV
输入失调电压	$R_S \leq 50 k \Omega$			3.0	mV
输入失调电压 平均温度系数	$R_S \leq 50 k \Omega$		3.0	15	μ V /°C
输入失调电流				20	nA
输入失调电流	$25^{\circ}\text{C} \leq T_{A} \leq T_{MAX}$		0.01	0.1	nA/℃
平均温度系数	$T_{MIN} \leq T_A \leq 25$ °C		0.02	0.2	nA/℃
输入偏置电流				100	μΑ
电源电流	$T_A = \pm 125 ^{\circ}\text{C}$, $V_S = \pm 20 \text{V}$		1.2	2.5	mA
大信号电压增益	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \geqslant 2k\Omega$	25			V/ mV
输出电压幅度	$V_S = \pm 15V$, $R_L = 10 \text{ k} \Omega$	±12	±14		V
	$R_L = 2k \Omega$	±10	±13		
输入电压范围	$V_S = \pm 20V$	±15			V
	$V_S = \pm 15V$		+15/-13		
共模抑制比	$R_S \leq 50 k \Omega$	80	96		dB
电源电压抑制比	$R_S \leq 50k \Omega$	80	96		dB

- 注 1: SG107 的最大结温度是 150℃,而 SG101/SG201 是 100℃。如若在高温下应用,金属圆壳封装的器件 必须按照结对环境的热阻为 150℃/W,或结对管壳的热阻为 45℃/W 来降低考虑。双列直插封装的器件,其结对周围环境的热阻为 100℃/W。
- 注 2: 电源电压低于±15V,则绝对最大输入电压等于电源电压。
- **注 3**: 除非另有说明,这些规范在下列条件下适用。对于G107 为±5V \leqslant V_S \leqslant ±20V以及-55℃ \leqslant T_A \leqslant +125 ℃,而对于SG207 为±5V \leqslant V_S \leqslant ±20V以及-25℃ \leqslant T_A \leqslant +85℃